High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite
<p>Spectral response curve for the detector.</p> "> Figure 2
<p>The relationship between MTF (modulation transfer function) limited by diffraction and F number.</p> "> Figure 3
<p>Relationship between SNR(signal to noise ratio) and F-No. of optical system.</p> "> Figure 4
<p>The structure of the optical system.</p> "> Figure 5
<p>Modulation transfer function curves of the optical system.</p> "> Figure 6
<p>Optical system’s structure with compensation lens.</p> "> Figure 7
<p>The relationship between MTF limited by diffraction and F number.</p> "> Figure 8
<p>Mechanical structure of the camera.</p> "> Figure 9
<p>The relationship between solar vector and the camera coordinate system.</p> "> Figure 10
<p>The changes of the angle between the solar vector and orbital plane changes in one year.</p> "> Figure 11
<p>The angle between solar vector and camera axis.</p> "> Figure 12
<p>Profile of the camera’s special shaped hood.</p> "> Figure 13
<p>PST curves of the camera.</p> "> Figure 14
<p>Different frames of night-time light image of Moscow area in one orbit. (<b>a</b>) normal image with the angle between axis and solar vector greater than 52 degree; (<b>b</b>) image effected by stray light with the angle between axis and solar vector less than 52 degree.</p> "> Figure 15
<p>(<b>a</b>) Original image of low gain and high gain mode; (<b>b</b>) HDR image constructed by low gain and high gain image.</p> "> Figure 16
<p>Line target in an image.</p> "> Figure 17
<p>Dynamic modulation transfer function curves of Luojia1-01 satellite.</p> "> Figure 18
<p>SNR(signal to noise ratio) tested results of the images. (<b>a</b>) the relationship between SNR and radiance of optical entrance; (<b>b</b>) the relationship between SNR and illuminance of targets with reflectivity of 0.3 and atmosphere’s transmittance of 0.6.</p> ">
Abstract
:1. Introduction
2. Mission analysis
2.1. Features of Night Light
2.2. Identification of Imaging Methods
2.3. Requirements for Payload
3. Optical and Mechanism Design
3.1. Decomposition for System Indicators
3.2. Optical System Design
3.3. Mechanical Structure Design
4. Design and Analysis of StrayLight Elimination
4.1. The Effect of Stray Light on Imaging
4.2. Analysis of the Relationship Between Solar Vector and Camera Attitude
4.3. Special Shaped Hood Design
4.4. In-orbit Verification of the Hood
5. HDR mode design
5.1. Imaging Electronics Design
5.2. High Dynamic Range Image Construction
6. In-orbit test results
6.1. Dynamic MTF Evaluation in orbit
6.2. SNR evaluation of the camera in-orbit
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kyba, C.C.M.; Kuester, T.; De Miguel, A.S.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. Viirs nighttime lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.M.; Chen, X.L.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Cao, C.; Shao, X.; Uprety, S. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of china at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 0554011. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.J.; Long, T.F.; Wang, C.; Ni, Y.; Ma, R.Q. Assessing light pollution in China based on nighttime light imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef]
- Li, D.R.; Li, X. Use of night-time light remote sensing in humanitarian disaster evaluation. Chin. J. Nat. 2018, 40, 169–176. [Google Scholar]
- Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.R.; He, X.J.; Michael, J. A preliminary investigation of Luojia-1 nighttime imagery. Remote Sensing Letters. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Standard for Lighting Design of Urban Road. Available online: http://www.mohurd.gov.cn/wjfb/201512/t20151216_225961.html (accessed on 15 February 2019).
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Zhao, J.X.; Zhang, T.; Zhang, J.J.; Yuan, G.Q. Study of the effects on frame aerial photography direct-gepreferencing accuracy caused by image motion. Infrared Laser Eng. 2015, 44, 632–638. [Google Scholar]
- Li, D.R.; Wang, S.G.; Zhou, Y.Q. An Introduction to Photogrammetry and Remote Sensing; Surveying and Mapping Press: Beijing, China, 2008; pp. 164–169. (In Chinese) [Google Scholar]
- Estribeau, M.; Magnan, P. Fast MTF measurement of CMOS imagers at the chip level using ISO 12233 slanted-edge methodology. Proc. SPIE 2004, 5570, 557–567. [Google Scholar] [Green Version]
- Weijun, C.; Bin, F.; Eengqin, Z.; Qinglin, L.; Xin, W. High Opto-mechanical Stability Design of Multi-spectral Camera. Spacecr. Recovery Remote Sens. 2012, 33, 85–92. [Google Scholar]
- Cipelletti, L.; Weitz, D.A. Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator. Rev. Sci. Instrum. 1999, 70, 3214–3221. [Google Scholar] [CrossRef]
- Park, J.; Jang, W.K.; Kim, S.; Jang, H.; Lee, S. Stray Light Analysis of High Resolution Camera for a Low-Earth-Orbit Satellite. J. Opt. Soc. Korea 2011, 15, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Jia, J.Q. Stray light removing design and simulation of spaceborne camera. Opt. Precision Eng. 2009, 19, 621–625. [Google Scholar]
- Ji, F.M.; Liu, R.H.; Ni, Y.D. Simulation analysis of STKX on BDS positioning performance. J. Navig. Position. 2018, 6, 64–68. [Google Scholar]
- Sun, C.M.; Zhao, F.; Zhang, Z. Modeling and Simulation of Space Object Optical Scattering Characteristics Using TracePro. Acta Photonica Sincia 2014, 43, 1–5. [Google Scholar]
- Peter, D.B. Slanted–Edge MTF for Digital Camera and Scanner Analysis. In Is and Ts Pics Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2000; pp. 135–138. [Google Scholar]
- Estribeau, M.; Magnan, P. Fast MTF Measurement of CMOS Imagers Using ISO 12233 Slanted-Edge Methodology. In Detectors and Associated Signal Processing; International Society for Optics and Photonics: Bellingham, WA, USA, 2004. [Google Scholar]
- Sampo, M.B.; Anssi, J.M. Random target method for fast MTF inspection. Opt. Express 2004, 12, 2610–2615. [Google Scholar]
- Viallefont, F. Dominique Leger. Improvement of the edge method for on-orbit MTF measurement. Opt. Express 2010, 18, 3531–3545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.C.; He, X.J.; Su, Z.Q. SNR Model Building of CMOS Imaging System of Rolling Digital Domain TDI Technology. J. Chang. Univ. Sci. Technol. (Nat. Sci. Ed.). 2018, 41, 68–72. [Google Scholar]
Parameters | Value |
---|---|
Active area | 22.5 mm (H) × 22.5 mm (V) |
Pixel size | 11 μm × 11 μm |
Number of active detectors | 2048 × 2048 |
Full well/Ke- | 91 |
Readout noise (e-) | 1.47 |
Dark current (e-/s/pix) @ 25 °C | 32 |
Dynamic range (Standard mode) | >70 dB |
Dynamic range (High dynamic range mode) | >96 dB |
Working temperature (°C) | −55-+80 |
Power consumption (mW) | <600 |
ADC | 12 |
Parameter | Physical Meaning |
---|---|
Reflectivity of ground object | |
Illuminance of ground object | |
Transmittance of atmosphere | |
Transmittance of optical system | |
Reciprocal of the relative aperture |
Item | Explanations |
---|---|
Gain ratio | |
Pixel output of the high gain image and low gain image | |
Conversion factor for high gain image and low gain image | |
Black level offset of high gain image and low gain image | |
The threshold value for conversion between low gain image and high gain image |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite. Sensors 2019, 19, 797. https://doi.org/10.3390/s19040797
Su Z, Zhong X, Zhang G, Li Y, He X, Wang Q, Wei Z, He C, Li D. High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite. Sensors. 2019; 19(4):797. https://doi.org/10.3390/s19040797
Chicago/Turabian StyleSu, Zhiqiang, Xing Zhong, Guo Zhang, Yanjie Li, Xiaojun He, Qiang Wang, Zongxi Wei, Chunling He, and Deren Li. 2019. "High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite" Sensors 19, no. 4: 797. https://doi.org/10.3390/s19040797