Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments †
<p>System architecture of the UIS static Wireless Sensor Network.</p> "> Figure 2
<p>Different types of nodes developed for the Urban Information System.</p> "> Figure 3
<p>Architecture of the Mobile node.</p> "> Figure 4
<p>ASCII frame structure employed in the mobile node.</p> "> Figure 5
<p>Simplified protocol message flow diagram for the local mode.</p> "> Figure 6
<p>Part of an enhanced frame.</p> "> Figure 7
<p>Simplified protocol message flow diagram for the networked mode.</p> "> Figure 8
<p>Frame in networked mode with gas sensors data: (<b>a</b>) Frame with data from two sensors. (<b>b</b>) Frame with data from three sensors.</p> "> Figure 9
<p>Integration of the Mobile node to create a Hybrid-Wireless Sensor Network.</p> "> Figure 10
<p>Human–Machine Interface for the Urban Information System.</p> "> Figure 11
<p>Vehicle used in experiments showing the top case with the UIS Mobile node installed.</p> "> Figure 12
<p>Area of the city center covered by experiments in local mode.</p> "> Figure 13
<p>Area of the city of Malaga covered by experiments in networked mode.</p> "> Figure 14
<p>Measurements for the NH3 sensor obtained in a networked mode experiment, as shown by the user interface.</p> ">
Abstract
:1. Introduction
2. Description of the Static Wireless Sensor Network
2.1. System Architecture
2.2. Implementation
- UIS Bluetooth node. It includes a BLUEGIGA WT12 Bluetooth module to the Waspmote V1.2 platform, along with the communications module XBee Pro S2, programmed to work with ZigBee wireless and Bluetooth 2.1 + EDR protocols simultaneously.
- UIS Ultrasound node. It adds an XL-MaxSonar-WR1 ultrasonic sensor (Maxbotix, Brainerd, MN, U.S.A.) to the initial configuration. These sensors operate at a frequency of 42 KHz, and reach the maximum range of 6 m with a sensitivity of 3.2 mV/cm to 3.3 V, or 7 m and a sensitivity of 4.9 mV/cm to 5.5 V.
- UIS Laser node. It is based on a Nano Pico ITX 1.2 GHz processor board (Via Technologies Inc., Taiwan) including 4 GB RAM DDR3 memory and a solid-state hard disk with a capacity of 60 GB. The laser sensor is a Hokuyo model UTM-30LX-EW (Osaka, Japan). It is intended to classify the types of vehicles crossing a given section.
- UIS Environmental Pollution node. It includes a dust sensor (GP2Y1010AU0F, Sharp, Osaka, Japan) a light intensity sensor (GL5528 photoresistor, Lida Optical&Electronic Co. Ltd., Henan, China) and a noise sensor (WM-61a, Panasonic, Osaka, Japan).
- UIS Gas node. It is composed of several gas sensors: O2 (SK-25, from Figaro, Osaka, Japan), O3 (MICS-2610, from E2V, Essex, U.K.), CO2 (TGS 4161, from Figaro), CO (TGS 2442, from Figaro), NH3 (TGS 2444, from Figaro), VOC (TGS 2600, from Figaro). Additional sensors include humidity (J808H5V5, from Jin Zon Enterprise Co. Ltd., Taiwan), atmospheric pressure (MPX4115A, from Motorola, Tokyo, Japan) and temperature (MCP9700/9701, from Microchip, Arizona, U.S.A.).
- GPS node. It includes a Jupiter N3 GPS module from Telit (London, U.K.).
3. Mobile Node
3.1. Overview
3.2. Architecture and Implementation
3.2.1. Local Mode
3.2.2. Networked Mode
3.3. Integration with the H-WSN
4. Experiments
4.1. Experiments in Local Mode
4.2. Experiments in Networked Mode
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Header | Payload | ||||||||||||||
A | B | C | D | E | D | F | D | G | D | Sensor_1 | D | Sensor_2 | D | Sensor_3 | D |
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 11 | # | CO2:331.409 | # | NH3:1.492 | # | AP:131.83 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 48 | # | GPS:36.720272, −4.349771 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 49 | # | GPS:36.720268, −4.349767 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 50 | # | GPS:36.720268, −4.349775 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 51 | # | GPS:36.720245, −4.349782 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 52 | # | GPS:36.720242, −4.349782 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 12 | # | TEMP:24.03 | # | HUM:71.5 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 13 | # | O2:18.794 | # | VOC:1.76209 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 53 | # | GPS:36.720238, −4.349785 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 54 | # | GPS:36.720238, −4.349807 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 55 | # | GPS:36.720257, −4.349757 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 56 | # | GPS:36.720253, −4.349745 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 57 | # | GPS:36.720230, −4.349773 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 14 | # | CO2:332.114 | # | NH3:1.475 | # | AP:132.10 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 58 | # | GPS:36.720230, −4.349777 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 59 | # | GPS:36.720249, −4.349757 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 60 | # | GPS:36.720257, −4.349753 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 61 | # | GPS:36.720257, −4.349753 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 62 | # | GPS:36.720257, −4.349760 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 63 | # | GPS:36.720257, −4.349745 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 64 | # | GPS:36.720257, −4.349743 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 15 | # | TEMP:24.68 | # | HUM:71.20 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 16 | # | O2:18.698 | # | VOC:1.93993 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 65 | # | GPS:36.720257, −4.349741 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 66 | # | GPS:36.720242, −4.349741 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 67 | # | GPS:36.720242, −4.349797 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 68 | # | GPS:36.720249, −4.349783 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 69 | # | GPS:36.720383, −4.349657 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | GAS | # | 17 | # | CO2:332.036 | # | NH3:1.499 | # | AP:131.95 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 70 | # | GPS:36.720428, −4.349602 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 71 | # | GPS:36.720493, −4.349543 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 72 | # | GPS:36.719578, −4.350820 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 73 | # | GPS:36.719494, −4.350966 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 74 | # | GPS:36.719494, −4.350998 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 75 | # | GPS:36.719501, −4.350993 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 76 | # | GPS:36.719570, −4.351252 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 18 | # | TEMP:26.13 | # | HUM:70.7 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 19 | # | O2:18.504 | # | VOC:1.84927 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 77 | # | GPS:36.719559, −4.351247 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 78 | # | GPS:36.720085, −4.352318 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 79 | # | GPS:36.720253, −4.353889 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 80 | # | GPS:36.720692, −4.356785 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 20 | # | CO2:332.193 | # | NH3:1.485 | # | AP:132.24 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 81 | # | GPS:36.720848, −4.357680 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 82 | # | GPS:36.721104, −4.360242 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 83 | # | GPS:36.721096, −4.360897 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | NGPS | # | 84 | # | GPS:36.721336, −4.362478 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 21 | # | TEMP:23.87 | # | HUM:70.3 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 22 | # | O2:19.085 | # | VOC:1.42802 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 85 | # | GPS:36.721630, −4.363220 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 86 | # | GPS:36.722065, −4.364815 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 87 | # | GPS:36.722317, −4.366760 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 88 | # | GPS:36.722363, −4.368630 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 89 | # | GPS:36.722301, −4.372442 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 23 | # | CO2:332.114 | # | NH3:1.487 | # | AP:132.02 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 90 | # | GPS:36.722355, −4.374267 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 91 | # | GPS:36.722115, −4.378480 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 92 | # | GPS:36.721836, −4.384040 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 93 | # | GPS:36.722389, −4.387465 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 24 | # | TEMP:23.55 | # | HUM:71.0 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 25 | # | O2:19.182 | # | VOC:1.27315 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 94 | # | GPS:36.722607, −4.388041 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 95 | # | GPS:36.722618, −4.387952 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 96 | # | GPS:36.722633, −4.388866 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 97 | # | GPS:36.722767, −4.390242 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 98 | # | GPS:36.723351, −4.392885 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 26 | # | CO2:332.153 | # | NH3:1.489 | # | AP:132.15 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 99 | # | GPS:36.723610, −4.394613 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 100 | # | GPS:36.723675, −4.395510 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 101 | # | GPS:36.723385, −4.396703 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 102 | # | GPS:36.722881, −4.398278 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 27 | # | TEMP:24.68 | # | HUM:72.2 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 28 | # | O2:19.085 | # | VOC:1.37480 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 103 | # | GPS:36.722881, −4.398252 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 104 | # | GPS:36.722195, −4.400375 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 105 | # | GPS:36.721539, −4.403050 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 106 | # | GPS:36.721138, −4.406835 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 29 | # | CO2:332.114 | # | NH3:1.474 | # | AP:132.27 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 107 | # | GPS:36.720963, −4.408802 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 108 | # | GPS:36.720982, −4.409337 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 109 | # | GPS:36.720963, −4.409273 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 110 | # | GPS:36.720985, −4.411543 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 111 | # | GPS:36.720058, −4.414030 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 30 | # | TEMP:23.71 | # | HUM:74.3 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 31 | # | O2:19.085 | # | VOC:1.78357 | |||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 112 | # | GPS:36.719753, −4.415108 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 113 | # | GPS:36.718822, −4.418522 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 114 | # | GPS:36.717731, −4.422348 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 115 | # | GPS:36.717411, −4.423333 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 32 | # | CO2:332.114 | # | NH3:1.502 | # | AP:132.00 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 116 | # | GPS:36.717415, −4.423338 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 117 | # | GPS:36.717350, −4.423276 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 118 | # | GPS:36.717258, −4.423769 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 119 | # | GPS:36.717133, −4.424300 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 120 | # | GPS:36.716770, −4.425715 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 121 | # | GPS:36.716656, −4.427165 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 33 | # | TEMP:25.81 | # | HUM:73.8 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 34 | # | O2:19.085 | # | VOC:1.24064 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 122 | # | GPS:36.716648, −4.427457 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 123 | # | GPS:36.716595, −4.428807 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 124 | # | GPS:36.716644, −4.428792 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 125 | # | GPS:36.716644, −4.428807 | # | ||||
<=> | 0x80 | 0X03 | # | 387244595 | # | NGAS | # | 35 | # | CO2:332.114 | # | NH3:1.496 | AP:132.54 | # | |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 126 | # | GPS:36.716621, −4.429085 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 127 | # | GPS:36.716965, −4.430676 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 128 | # | GPS:36.717220, −4.434623 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 129 | # | GPS:36.717152, −4.437274 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 36 | # | TEMP:25.48 | # | HUM:71.5 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 37 | # | O2:18.891 | # | VOC:1.01747 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 130 | # | GPS:36.716610, −4.440198 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 131 | # | GPS:36.716297, −4.441992 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 132 | # | GPS:36.716305, −4.442037 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 133 | # | GPS:36.715752, −4.444772 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 38 | # | CO2:331.996 | # | NH3:1.513 | # | AP:132.41 | # |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 134 | # | GPS:36.715527, −4.446649 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 135 | # | GPS:36.715346, −4.447702 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 136 | # | GPS: 36.714713, −4.449996 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 137 | # | GPS: 36.714381, −4.451124 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 39 | # | TEMP:25.21 | # | HUM:71.7 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 40 | # | O2:18.982 | # | VOC:1.31624 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 138 | # | GPS: 36.714170, −4.452328 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 139 | # | GPS: 36.713809, −4.453980 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 140 | # | GPS: 36.713417, −4.455783 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 141 | # | GPS: 36.712994, −4.457854 | # | ||||
<=> | 0x80 | 0X03 | # | 387244595 | # | NGAS | # | 41 | # | CO2:332.057 | # | NH3:1.511 | AP:132.12 | # | |
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 142 | # | GPS: 36.712782, −4.459396 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 143 | # | GPS: 36.712571, −4.460751 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 144 | # | GPS: 36.712601, −4.462669 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 145 | # | GPS: 36.712782, −4.465112 | # | ||||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 42 | # | TEMP:24.68 | # | HUM:72.2 | # | ||
<=> | 0x80 | 0x02 | # | 387244595 | # | NGAS | # | 43 | # | O2:19.085 | # | VOC:1.10321 | # | ||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 146 | # | GPS: 36.712992, −4.466951 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 147 | # | GPS: 36.713233, −4.469393 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 148 | # | GPS: 36.713413, −4.471533 | # | ||||
<=> | 0x80 | 0x01 | # | 387264467 | # | GPS | # | 149 | # | GPS: 36.713402, −4.470782 | # | ||||
<=> | 0x80 | 0x03 | # | 387244595 | # | NGAS | # | 44 | # | CO2:332.193 | # | NH3:1.519 | # | AP:131.71 | # |
References
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Ruano, A.; Silva, S.; Duarte, H.; Ferreira, P.M. Wireless Sensors and IoT Platform for Intelligent HVAC Control. Appl. Sci. 2018, 8, 370. [Google Scholar] [CrossRef]
- Tonneau, A.S.; Mitton, N.; Vandaele, J. A survey on (mobile) wireless sensor network experimentation testbeds. In Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems, Marina Del Rey, CA, USA, 26–28 May 2014; pp. 263–268. [Google Scholar]
- Ochoa, S.F.; Santos, R. Human-centric wireless sensor networks to improve information availability during urban search and rescue activities. Inf. Fusion 2015, 22, 71–84. [Google Scholar] [CrossRef]
- Curiac, D.I. Towards wireless sensor, actuator and robot networks: Conceptual framework, challenges and perspectives. J. Netw. Comput. Appl. 2016, 63, 14–23. [Google Scholar] [CrossRef]
- Tuna, G.; Gungor, V.C.; Gulez, K. An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters. Ad Hoc Netw. 2014, 13, 54–68. [Google Scholar] [CrossRef]
- Fernandez-Lozano, J.J.; Martín-Guzmán, M.; Martín-Ávila, J.; García-Cerezo, A. A wireless sensor network for urban traffic characterization and trend monitoring. Sensors 2015, 15, 26143–26169. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Wang, L.; Dou, M.; Chen, J.; Li, H. Natural disaster monitoring with wireless sensor networks: A case study of data-intensive applications upon low-cost scalable systems. Mob. Netw. Appl. 2013, 18, 651–663. [Google Scholar] [CrossRef]
- Anjum, S.S.; Noor, R.M.; Anisi, M.H. Review on MANET Based Communication for Search and Rescue Operations. Wirel. Pers. Commun. 2017, 94, 31–52. [Google Scholar] [CrossRef]
- Freeman, J.D.; Omanan, V.; Ramesh, M.V. Wireless integrated robots for effective search and guidance of rescue teams. In Proceedings of the 2011 Eighth International Conference on Wireless and Optical Communications Networks, Paris, France, 24–26 May 2011; pp. 6–10. [Google Scholar]
- Zander, J.; Mosterman, P.J.; Padir, T.; Wan, Y.; Fu, S. Cyber-physical Systems can Make Emergency Response Smart. Procedia Eng. 2015, 107, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Lazna, T.; Gabrlik, P.; Jilek, T.; Zalud, L. Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 2018, 15, 1–16. [Google Scholar] [CrossRef]
- Dios, J.R.M.; Lferd, K.; Bernabé, A.d.; Núñez, G.; Torres-González, A.; Ollero, A. Cooperation between UAS and Wireless Sensor Networks for Efficient Data Collection in Large Environments. J. Intell. Robot. Syst. 2012, 70, 491–508. [Google Scholar]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nellore, K.; Hancke, G. A Survey on Urban Traffic Management System Using Wireless Sensor Networks. Sensors 2016, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Martín-guzmán, M.; Martín-ávila, J. A Rapid Deployment Wireless Sensor Network for Sustainable Urban Mobility. In Proceedings of the 2015 23rd Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, 16–19 June 2015. [Google Scholar]
- Devarakonda, S.; Sevusu, P.; Liu, H.; Liu, R.; Iftode, L.; Nath, B. Real-time air quality monitoring through mobile sensing in metropolitan areas. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013; p. 1. [Google Scholar]
- Dimitrakopoulos, G.; Demestichas, P. Systems Based on Cognitive Networking Principles and Management Functionality. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Losilla, F.; Garcia-Sanchez, A.-J.; Garcia-Sanchez, F.; Garcia-Haro, J.; Haas, Z.J. A Comprehensive Approach to WSN-Based ITS Applications: A Survey. Sensors 2011, 11, 10220–10265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesen, M.R.; McLeod, R.D. Bluetooth in Intelligent Transportation Systems: A Survey. Int. J. Intell. Transp. Syst. Res. 2015, 13, 143–153. [Google Scholar] [CrossRef]
- Yoo, S. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System. Sensors 2013, 13, 1160–1182. [Google Scholar] [CrossRef] [Green Version]
- Rout, M.; Roy, R. Dynamic deployment of randomly deployed mobile sensor nodes in the presence of obstacles. Ad Hoc Netw. 2016, 46, 12–22. [Google Scholar] [CrossRef]
- Heo, N.; Varshney, P.K. A Distributed Self Spreading Algorithm for Mobile Wireless Sensor Networks. In Proceedings of the 2003 IEEE Wireless Communications and Networking, New Orleans, LA, USA, 16–20 March 2003; pp. 1525–3511. [Google Scholar]
- Vales-Alonso, J.; Parrado-García, F.J.; López-Matencio, P.; Alcaraz, J.J.; González-Castaño, F.J. On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Ad Hoc Netw. 2013, 11, 846–860. [Google Scholar] [CrossRef]
- Yu, X.; Huang, W.; Lan, J.; Qian, X. A novel virtual force approach for node deployment in wireless sensor network. In Proceedings of the 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems, Hangzhou, China, 16–18 May 2012; pp. 359–363. [Google Scholar]
- Al-Turjman, F.M.; Hassanein, H.S.; Ibnkahla, M.A. Efficient deployment of wireless sensor networks targeting environment monitoring applications. Comput. Commun. 2013, 36, 135–148. [Google Scholar] [CrossRef]
- Mei, Y.; Xian, C.; Das, S.; Hu, Y.C.; Lu, Y.H. Sensor replacement using mobile robots. Comput. Commun. 2007, 30, 2615–2626. [Google Scholar] [CrossRef]
- Niewiadomska-Szynkiewicz, E.; Sikora, A.; Marks, M. A movement-assisted deployment of collaborating autonomous sensors for indoor and outdoor environment monitoring. Sensors 2016, 16, 1497. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, L.T.; Shu, L.; Leung, V.C.M.; Rodrigues, J.J.P.C.; Wang, L. Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Trans. Ind. Electron. 2014, 61, 6346–6355. [Google Scholar] [CrossRef]
- Du, R.; Chen, C.; Yang, B.; Lu, N.; Guan, X.; Shen, X. Effective urban traffic monitoring by vehicular sensor networks. IEEE Trans. Veh. Technol. 2015, 64, 273–286. [Google Scholar] [CrossRef]
- L-Dhief, F.T.A.; Sabri, N.; Fouad, S.; Latiff, N.M.A.; Albader, M.A.A. A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. J. King Saud Univ. Comput. Inf. Sci. 2017, in press. [Google Scholar]
- Battat, N.; Seba, H.; Kheddouci, H. Monitoring in mobile ad hoc networks: A survey. Comput. Netwo. 2014, 69, 82–100. [Google Scholar] [CrossRef]
- Vahdat-Nejad, H.; Ramazani, A.; Mohammadi, T.; Mansoor, W. A survey on context-aware vehicular network applications. Veh. Commun. 2016, 3, 43–57. [Google Scholar] [CrossRef]
- Wichmann, A.; Korkmaz, T.; Tosun, A.S. Robot Control Strategies for Task Allocation with Connectivity Constraints in Wireless Sensor and Robot Networks. IEEE Trans. Mob. Comput. 2017, 17, 1429–1441. [Google Scholar] [CrossRef]
- Agarwal, Y.; Jain, K.; Karabasoglu, O. Smart vehicle monitoring and assistance using cloud computing in vehicular Ad Hoc networks. Int. J. Transp. Sci. Technol. 2017, 7, 60–73. [Google Scholar] [CrossRef]
- Lai, Y.; Yang, F.; Su, J.; Zhou, Q.; Wang, T.; Zhang, L.; Xu, Y. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks. Sensors 2017, 18, 82. [Google Scholar] [CrossRef]
- Marjovi, A.; Arfire, A.; Martinoli, A. High Resolution Air Pollution Maps in Urban Environments Using Mobile Sensor Networks. In Proceedings of the 2015 International Conference on Distributed Computing in Sensor Systems, Fortaleza, Brazil, 10–12 June 2015. [Google Scholar]
- Mohamed, S.M.; Hamza, H.S.; Saroit, I.A. Coverage in mobile wireless sensor networks (M-WSN): A survey. Comput. Commun. 2017, 110, 133–150. [Google Scholar] [CrossRef]
- Chen, X.; Yu, P. Research on hierarchical mobile wireless sensor network architecture with mobile sensor nodes. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 2863–2867. [Google Scholar]
- Del Castillo, I.; Tobajas, F.; Esper-Chaín, R.; de Armas, V. Hardware platform for wide-area vehicular sensor networks with mobile nodes. Veh. Commun. 2016, 3, 21–30. [Google Scholar] [CrossRef]
- Abdulsalam, H.M.; Ali, B.A.; AlRoumi, E. Usage of mobile elements in internet of things environment for data aggregation in wireless sensor networks. Comput. Electr. Eng. 2017, 72, 789–807. [Google Scholar] [CrossRef]
- Sawai, K.; Tanabe, S.; Kono, H.; Koike, Y. Construction Strategy of Wireless Sensor Networks with Throughput Stability by Using Mobile Robot. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 14–20. [Google Scholar] [CrossRef]
- Chang, C.; Chang, C.; Hsiao, C.; Chin, Y. Data Collection for Robot Movement Mechanisms in Wireless Sensor and Robot Networks. In Proceedings of the 2016 International Computer Symposium (ICS), Chiayi, Taiwan, 15–17 December 2016; pp. 435–440. [Google Scholar]
- Hadi, M.Z.S.; Miyaji, Y.; Uehara, H. Group Mobility Based Clustering Scheme for Mobile Wireless Sensor Networks. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 81–86. [Google Scholar]
- Kaswan, A.; Nitesh, K.; Jana, P.K. Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU Int. J. Electron. Commun. 2017, 73, 110–118. [Google Scholar] [CrossRef]
- Darwish, T.; Bakar, K.A. Lightweight intersection-based traffic aware routing in Urban vehicular networks. Comput. Commun. 2016, 87, 60–75. [Google Scholar] [CrossRef]
- Darwish, T.; Bakar, K.A.; Hashim, A. Green geographical routing in vehicular ad hoc networks: Advances and challenges. Comput. Electr. Eng. 2017, 64, 436–449. [Google Scholar] [CrossRef]
- Boussoufa-Lahlah, S.; Semchedine, F.; Bouallouche-Medjkoune, L. Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Veh. Commun. 2018, 11, 20–31. [Google Scholar] [CrossRef]
- Yarinezhad, R.; Sarabi, A. Reducing delay and energy consumption in wireless sensor networks by making virtual grid infrastructure and using mobile sink. AEU Int. J. Electron. Commun. 2018, 84, 144–152. [Google Scholar] [CrossRef]
- Khan, A.W.; Abdullah, A.H.; Anisi, M.H.; Bangash, J.I. A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors 2014, 14, 2510–2548. [Google Scholar] [CrossRef]
- Sarika, S.; Pravin, A.; Vijayakumar, A.; Selvamani, K. Security Issues in Mobile Ad Hoc Networks. Procedia Comput. Sci. 2016, 92, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Ghebleh, R. A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: A survey. Comput. Netw. 2018, 131, 15–37. [Google Scholar] [CrossRef]
- Alia, O.M.D. Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm. Inf. Sci. 2017, 385–386, 76–95. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Li, B.; Kim, H.J.; Lee, S. Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener. Comput. Syst. 2017, 76, 452–457. [Google Scholar] [CrossRef]
- Tunca, C.; Isik, S.; Donmez, M.Y.; Ersoy, C. Distributed Mobile Sink Routing for Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 877–897. [Google Scholar] [CrossRef]
- Qureshi, K.N.; Abdullah, A.H.; Kaiwartya, O.; Iqbal, S.; Butt, R.A.; Bashir, F. A Dynamic Congestion Control Scheme for safety applications in vehicular ad hoc networks. Comput. Electr. Eng. 2017, 72, 774–788. [Google Scholar] [CrossRef]
- Fernandez-Lozano, J.J.; Gomez-Ruiz, J.A.; Martín-Guzmán, M.; Martín-Ávila, J.; Bertiz, C.S.; García-Cerezo, A. Wireless Sensor Networks for Urban Information Systems Preliminary Results of Integration of an Electric Vehicle as a Mobile Node. Proceedings of ROBOT 2017: Third Iberian Robotics Conference, Sevilla, Spain, 22–24 November 2017; pp. 190–199. [Google Scholar]
- Meshlium Technical Guide|Libelium. [Online]. Available online: http://www.libelium.com/development/meshlium/documentation/meshlium-technical-guide/ (accessed on 5 May 2018).
- Fernández-Lozano, J.J.; Mandow, A.; Martín-Guzmán, M.; Martín-Ávila, J.; Gomez-Ruiz, J.A. Integration of a Canine Agent in a Wireless Sensor Network for Information Gathering in Search and Rescue Missions. In Proceedings of the IEEE/RSJ International Conference on Intelligent and Robotic Systems, Madrid, Spain, 1–5 October 2018; pp. 5685–5690. [Google Scholar]
Item | EP Node | Gas Node | GPS Coordinates | ||||||
---|---|---|---|---|---|---|---|---|---|
Luminance (lux) | Dust (ppm) | Noise (dB) | Temp (°C) | Humidity (%) | O2 (%) | CO2 (ppm) | VOC (ppm) | ||
1 | 25.0 | 0.074 | 83 | 24.00 | 43.7 | 19.585 | 334.300 | 6.05 | 36.723861, −4.426139 |
2 | 97.0 | 0.075 | 93 | 25.81 | 47.6 | 17.794 | 334.490 | 5.25 | 36.717833, −4.426333 |
3 | 97.5 | 0.082 | 94 | 23.55 | 53.2 | 17.843 | 334.951 | 8.69 | 36.721444, −4.425111 |
4 | 98.0 | 0.074 | 91 | 27.10 | 42.1 | 18.569 | 334.615 | 8.46 | 36.723722, −4.422750 |
5 | 98.5 | 0.074 | 91 | 25.32 | 51.1 | 18.133 | 334.793 | 7.64 | 36.721278, −4.413306 |
6 | 75.2 | 0.072 | 93 | 27.85 | 44.3 | 18.952 | 334.713 | 7.94 | 36.716861, −4.427944 |
7 | 98.6 | 0.074 | 93 | 26.29 | 50.0 | 18.423 | 334.694 | 8.13 | 36.719722, −4.435972 |
Item | NH3 (ppm) | Temp (°C) | Humidity (%) | O2 (%) | CO2 (ppm) | AP (kPa) | VOC (ppm) | GPS Coordinates |
---|---|---|---|---|---|---|---|---|
1 | 1.459 | 24.19 | 68.2 | 18.891 | 332.310 | 131.44 | 2.058 | 36.713976, −4.482990 |
2 | 1.480 | 22.90 | 77.4 | 19.278 | 332.153 | 131.83 | 1.464 | 36.713168, −4.457434 |
3 | 1.486 | 23.06 | 77.4 | 19.182 | 332.271 | 132.39 | 1.598 | 36.709676, −4.427887 |
4 | 1.472 | 21.94 | 78.8 | 19.182 | 332.193 | 132.02 | 1.428 | 36.720616, −4.403189 |
5 | 1.482 | 22.74 | 76.1 | 19.278 | 331.448 | 132.07 | 2.999 | 36.720149, −4.368288 |
6 | 1.500 | 23.39 | 74.1 | 19.182 | 332.193 | 132.00 | 1.428 | 36.715815, −4.346487 |
7 | 1.475 | 24.03 | 71.5 | 18.794 | 332.114 | 132.10 | 1.762 | 36.720230, −4.349773 |
8 | 1.485 | 26.13 | 70.7 | 18.504 | 332.193 | 132.24 | 1.849 | 36.720692, −4.356785 |
9 | 1.489 | 23.55 | 71.0 | 19.182 | 332.153 | 132.15 | 1.273 | 36.723351, −4.392885 |
10 | 1.502 | 23.71 | 74.3 | 19.085 | 332.114 | 132.00 | 1.784 | 36.717411, −4.423333 |
11 | 1.513 | 25.48 | 71.5 | 18.891 | 331.996 | 132.41 | 1.017 | 36.715752, −4.444772 |
12 | 1.519 | 24.68 | 72.2 | 19.085 | 332.193 | 131.71 | 1.103 | 36.713402, −4.470782 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socarrás Bertiz, C.A.; Fernández Lozano, J.J.; Gomez-Ruiz, J.A.; García-Cerezo, A. Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments. Sensors 2019, 19, 215. https://doi.org/10.3390/s19010215
Socarrás Bertiz CA, Fernández Lozano JJ, Gomez-Ruiz JA, García-Cerezo A. Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments. Sensors. 2019; 19(1):215. https://doi.org/10.3390/s19010215
Chicago/Turabian StyleSocarrás Bertiz, Carlos Alberto, Juan Jesús Fernández Lozano, Jose Antonio Gomez-Ruiz, and Alfonso García-Cerezo. 2019. "Integration of a Mobile Node into a Hybrid Wireless Sensor Network for Urban Environments" Sensors 19, no. 1: 215. https://doi.org/10.3390/s19010215