A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays
<p>The schematic design of the geometry is as follows: nanoring-strip graphene arrays with period <span class="html-italic">P</span> = 300 nm, strip length <span class="html-italic">L</span> = 180 nm, nanoring width <span class="html-italic">W</span><sub>1</sub> = 30 nm, strip width <span class="html-italic">W</span><sub>2</sub> = 30 nm, and graphene thickness <span class="html-italic">t</span> = 1 nm. The arrays arranged in a substrate (<span class="html-italic">n<sub>sub</sub></span>) and a sensing medium (<span class="html-italic">n<sub>med</sub></span>).</p> "> Figure 2
<p>(<b>A</b>) The transmission spectra of the nanoring-strip (strip length <span class="html-italic">L</span> = 180 nm, nanoring width <span class="html-italic">W<sub>1</sub></span> = 30 nm, and strip width <span class="html-italic">W<sub>2</sub></span> = 30 nm). (<b>B</b>) and (<b>C</b>) The electric field distribution of nanoring-strip structure in shorter wavelength (mode A) and longer wavelength (mode B), respectively. (<b>D</b>) Calculated effective refractive indices of different the <span class="html-italic">n<sub>g</sub></span> and the sensing medium refractive index <span class="html-italic">n<sub>med</sub></span>.</p> "> Figure 3
<p>(<b>A</b>) The transmission spectra of graphene with different strip length (<span class="html-italic">L</span>). Structural parameters: <span class="html-italic">W<sub>1</sub></span> = <span class="html-italic">W<sub>2</sub></span> = 30 nm, <span class="html-italic">P</span> = 300 nm, <span class="html-italic">n<sub>g</sub></span> = 3 × 10<sup>13</sup> cm<sup>−2</sup>, and <span class="html-italic">n<sub>med</sub></span> = 1.0. <span class="html-italic">L</span> = 140 nm, 160 nm, 180 nm, 200 nm, and 220 nm the corresponding electric field distribution is labeled (<b>B</b>)–(<b>F</b>).</p> "> Figure 4
<p>(<b>A</b>) The transmission spectra of graphene with different sensing medium refractive index (<span class="html-italic">n<sub>med</sub></span>); (<b>B</b>) full width at half maximum (FWHM) and figure of merit (FOM) of mode A and mode B for different the <span class="html-italic">n<sub>med</sub></span>; (<b>C</b>) For mode A and mode B, the transmission dip wavelength corresponding to transmission dip as a function of the <span class="html-italic">n<sub>med</sub></span>. Structural parameters: <span class="html-italic">L</span> = 180 nm; <span class="html-italic">P</span> = 300 nm; <span class="html-italic">W</span><sub>1</sub> = <span class="html-italic">W</span><sub>2</sub> = 30 nm; and <span class="html-italic">n<sub>g</sub></span> = 3 × 10<sup>13</sup> cm<sup>−2</sup>.</p> "> Figure 5
<p>(<b>A</b>) Calculated the transmission spectra at different doping levels (<span class="html-italic">n<sub>g</sub></span>); (<b>B</b>) Calculated transmission spectra at different ring width (<span class="html-italic">W</span><sub>1</sub>). Other geometry parameters are set to <span class="html-italic">L</span> = 180 nm, <span class="html-italic">W</span><sub>2</sub> = 30 nm, <span class="html-italic">P</span> = 300 nm, and <span class="html-italic">n<sub>med</sub></span> = 1.0.</p> "> Figure 6
<p>The transmission spectra at different angles of incidence, for TM (<b>A</b>) and TE (<b>B</b>) polarizations, respectively. The simulated angle dispersions of the transmission in graphene nanoring-strip with the doping level of <span class="html-italic">n<sub>g</sub></span> = 3 × 10<sup>13</sup> cm<sup>−2</sup> for (<b>C</b>) TM and (<b>D</b>) TE.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, S.H.; Kim, Y.L.; Byun, K.M. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 2011, 19, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, J.; Yang, L.; Hu, Z.; Wu, X.; Zheng, G. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance ensors based on waveguide theory. Sci. Rep. 2018, 8, 2560. [Google Scholar] [CrossRef] [PubMed]
- Mitsushio, M.; Miyashita, K.; Higo, M. Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sens. Actuat. A-Phys. 2006, 125, 296–303. [Google Scholar] [CrossRef]
- Ding, S.; Yi, J.; Li, J.; Ren, B.; Wu, D.; Panneerselvam, R.; Tian, Z. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, C.; Yin, Y. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability. Nanoscale 2017, 9, 14875–14880. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xiao, S.; Zhang, Y.; Pan, D.; Wen, J.; Qian, X.; Wang, D.; Cao, H.; He, W.; Quan, M.; et al. Binary “island” shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates. Nanoscale 2018, 10, 14220–14229. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, T.; Liu, Y.; Han, X.; Yan, X. An Ultrasensitive and Multispectral Refractive Index Sensor Design Based on Quad-Supercell Metamaterials. Plasmonics 2017, 12, 185–191. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A.P. Avouris Ultrafast graphene photodetector. Nat. Nano Tech. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Low, T.; Zhu, W.; Yan, H.; Xia, F.; Avouris, P. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 2013, 4, 1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.P.; Niu, G.; Chen, X.F.; Zhou, Z.G.; Yi, Z.; Ye, X.; Duan, T.; Yi, Y.; Xiao, S.Y. Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt. Commun. 2019, 436, 57–62. [Google Scholar] [CrossRef]
- Otsuji, T.; Popov, V.; Ryzhii, V. Active graphene plasmonics for terahertz device applications. J. Phys. D Appl. Phys. 2014, 47, 094006. [Google Scholar] [CrossRef]
- Su, Y.; Lin, Q.; Zhai, X.; Luo, X.; Wang, L. Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets. Opt. Mater. Express 2018, 8, 884–892. [Google Scholar] [CrossRef]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Sensale-Rodriguez, B.; Yan, R.; Zhu, M.; Jena, D.; Liu, L.; Xing, H.G. Efficient terahertz electro-absorption modulation employing grapheme plasmonic structures. Appl. Phys. Lett. 2012, 101, 261115. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Z.; Xiao, S.; Xu, X. Absorption enhancement in double-layer cross-shaped graphene arrays. Mater. Res. Express 2018, 5, 015605. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Mao, D.; Zeng, C.; Xiao, F.; Yang, D.; Mei, T.; Zhao, J. Plasmonic Fano spectral response from graphene metasurfaces in the MIR region. Opt. Mater. Express 2018, 8, 1058–1068. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Chen, L.; Li, X. Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. Opt. Express 2013, 21, 20888. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, F.; Liang, R.; Wei, Z.; Meng, H.; Dong, H.; Cen, H.; Wang, L.; Qin, S. Tunable Terahertz Filters Based on Graphene Plasmonic All-Dielectric Metasurfaces. Plasmonics 2016, 13, 525–530. [Google Scholar] [CrossRef]
- Bondarev, I.V.; Shalaev, V.M. Universal features of the optical properties of ultrathin plasmonic films. Opt. Mater. Express 2017, 7, 3731–3740. [Google Scholar] [CrossRef]
- Qian, Q.; Liang, Y.; Liang, Y.; Shao, H.; Zhang, M.; Xiao, T.; Wang, J. Tunable Multiple-Step Plasmonic Bragg Reflectors with Graphene-Based Modulated Grating. Sensors 2016, 16, 2039. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Zhao, Y.; Jang, H.; Lee, S.; Kim, J.; Ahn, J.; Kim, P.; Choi, J.; Hong, B. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Cen, C.; Lin, H.; Liang, C.; Huang, J.; Chen, X.; Yi, Z.; Tang, Y.; Duan, T.; Xu, X.; Xiao, S.; et al. Tunable plasmonic resonance absorption characteristics in periodic H-shaped graphene arrays. Superlattices Microst. 2018, 120, 427–435. [Google Scholar] [CrossRef]
- Yu, P.; Wu, J.; Ashalley, E.; Govorov, A.; Wang, Z. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J. Phys. D Appl. Phys. 2016, 49, 365101. [Google Scholar] [CrossRef] [Green Version]
- Cen, C.; Chen, J.; Liang, C.; Huang, J.; Chen, X.; Tang, Y.; Yi, Z.; Xu, X.; Yi, Y.; Xiao, S. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physics E 2018, 103, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Jia, T.; Zhang, Y.; Zhao, H.; Zhang, S.; Feng, D.; Sun, Z. Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures. Sensors 2013, 13, 11350–11361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinko, J.; Hrvoje, B.; Marin, S. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef]
- Li, K.; Ma, X.; Zhang, Z.; Song, J.; Xu, Y.; Song, G. Sensitive refractive index sensing with tunable sensing range and good operation anglepolarization-tolerance using graphene concentric ring arrays. J. Phys. D Appl. Phys. 2014, 47, 405101. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Yan, X.; Li, Z.; Xu, C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 2018, 126, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Wang, T.; Liu, Y.; Xu, C.; Han, X.; Yan, X. Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 2016, 18, 26661–26669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Wang, H.; Liu, Y.; Xiao, L.; Zhou, C.; Liu, Y.; Xu, C.; Xiao, S. Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial. J. Phys. D Appl. Phys. 2018, 51, 415105. [Google Scholar] [CrossRef]
- Mandal, P. H-Shape Plasmonic Metasurface as Refractive Index Sensor. Plasmonics 2015, 10, 439–445. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, G.; Liu, Z.; Liu, X.; Zhang, X.; Cai, Z.; Liu, M.; Gao, H.; Gu, G. Extraordinary Optical Transmission in Metallic Nanostructures with a Plasmonic Nanohole Array of Two Connected Slot Antennas. Plasmonics 2015, 10, 483–488. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Y.; Xu, X.; Chen, X.; Zhou, Z.; Shi, P.; Yi, Z.; Ye, X.; Xiao, S.; Yi, Y. Plasmonic Absorption Enhancement in Elliptical Graphene Arrays. Nanomaterials 2018, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J.; Zhou, Z.; Yi, Z.; Ye, X. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays. Mater. Res. Express 2018, 5, 045802. [Google Scholar] [CrossRef] [Green Version]
- Tobias, W.; Giovanni, V.; Mikael, F.; Philippe, T. High-sensitivity plasmonic refractive index sensing using graphene. 2D Mater. 2017, 4, 025103. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Pan, C.; Li, Q.; Cai, W.; Zhang, X.; Wu, Q.; Fan, S.; Xu, J. Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt. Express 2013, 38, 3133–3136. [Google Scholar] [CrossRef] [PubMed]
- Pockrand, I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 1978, 72, 577–588. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, C.; Lin, H.; Huang, J.; Liang, C.; Chen, X.; Tang, Y.; Yi, Z.; Ye, X.; Liu, J.; Yi, Y.; et al. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors 2018, 18, 4489. https://doi.org/10.3390/s18124489
Cen C, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y, et al. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors. 2018; 18(12):4489. https://doi.org/10.3390/s18124489
Chicago/Turabian StyleCen, Chunlian, Hang Lin, Jing Huang, Cuiping Liang, Xifang Chen, Yongjian Tang, Zao Yi, Xin Ye, Jiangwei Liu, Yougen Yi, and et al. 2018. "A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays" Sensors 18, no. 12: 4489. https://doi.org/10.3390/s18124489