Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things
<p>The system models.</p> "> Figure 2
<p>The outage probabilities of primary users versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> with different <span class="html-italic">K</span> values.</p> "> Figure 3
<p>The outage probability of secondary system versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> in the two protocols with different <span class="html-italic">K</span> values.</p> "> Figure 4
<p>The intercept probabilities of primary users versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> with different <span class="html-italic">K</span> values.</p> "> Figure 5
<p>The intercept probabilities of primary users versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> with different <math display="inline"><semantics> <msubsup> <mi>σ</mi> <mrow> <mi>SE</mi> </mrow> <mn>2</mn> </msubsup> </semantics></math> values.</p> "> Figure 6
<p>The intercept probabilities of primary users versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> with different <math display="inline"><semantics> <msubsup> <mi>σ</mi> <mrow> <mi>PE</mi> </mrow> <mn>2</mn> </msubsup> </semantics></math> values.</p> "> Figure 7
<p>The intercept probabilities of primary users versus <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> with different <math display="inline"><semantics> <msub> <mi>r</mi> <mn>1</mn> </msub> </semantics></math> values.</p> ">
Abstract
:1. Introduction
- We propose a ST cooperative transmission protocol by selecting jammer, which transmits an artificial noise to disturb the eavesdropper.
- We propose a selection scheme to determine the friendly jammer and secondary signal transmitter. The ST, which can provide the smallest intercept probability, is chosen as the friendly jammer to transmit artificial noise.
- We derive the closed-form expressions of the intercept probability and the outage probability for the primary system over Rayleigh fading channels, respectively. We also derive the outage probability of the secondary user over Rayleigh channels.
2. The System Models and the Selection Schemes for STs
2.1. The System Model Based on the Security Enhancement Approach by Friendly Jammer Selection
2.2. The Selection Schemes for and
2.3. The Conventional Non-Security Model
3. Performance Analysis
3.1. The Primary Outage Probability for the Proposed Protocols
3.2. The Outage Probability of the Secondary System
3.3. The Intercept Probability of the Primary Transmission
3.4. The Outage and Intercept Probability for the Conventional No-Security Protocol
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Wu, Q.; Ding, G.; Xu, Y.; Feng, S.; Du, Z.; Wang, J.; Long, K. Cognitive Internet of Things: A New Paradigm Beyond Connection. IEEE Internet Things J. 2014, 1, 129–142. [Google Scholar] [CrossRef]
- Song, F.; Ai, Z.; Li, J.; Pau, G.; Collotta, M.; You, I.; Zhang, H. Smart collaborative caching for Information-centric IoT in fog computing. Sensors 2017, 17, 2512. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Liu, Y.; Song, F.; Zhang, H. A smart collaborative charging algorithm for mobile power distribution in 5G networks. IEEE Access 2018, 6, 28668–28679. [Google Scholar] [CrossRef]
- Trihinas, D.; Pallis, G.; Dikaiakos, M. Low-Cost Adaptive Monitoring Techniques for the Internet of Things. IEEE Trans. Serv. Comput. 2018, 99, 1. [Google Scholar] [CrossRef]
- Trihinas, D.; Pallis, G.; Dikaiakos, M. ADMin: Adaptive Monitoring Dissemination for the Internet of Things. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017. [Google Scholar]
- Tata, S.; Mohamed, M.; Megahed, A. An Optimization Approach for Adaptive Monitoring in IoT Environments. In Proceedings of the 2017 IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017; pp. 378–385. [Google Scholar]
- Lee, Y.-T.; Hsiao, W.-H.; Lin, Y.-S.; Chou, S.-C.T. Privacy-Preserving Data Analytics in Cloud-Based Smart Home with Community Hierarchy. IEEE Trans. Consum. Electron. 2017, 63, 200–207. [Google Scholar] [CrossRef]
- Song, F.; Zhou, Y.; Wang, Y.; Zhao, T.; You, I.; Zhang, H. Smart Collaborative Distribution for Privacy Enhancement in Moving Target Defense. Inf. Sci. 2018. [Google Scholar] [CrossRef]
- Ai, Z.; Zhou, Y.; Song, F. A Smart Collaborative Routing Protocol for Reliable Data Diffusion in IoT. Sensors 2017, 18, 1926. [Google Scholar] [CrossRef]
- Uchida, N.; Takeuchi, S.; Ishida, T.; Shibata, Y. Mobile traffic accident prevention system based on chronological changes of wireless signals and sensors. J. Wirel. Netw. Ubiquitous Comput. Dependable Appl. 2017, 8, 57–66. [Google Scholar]
- Kotenko, I.; Saenko, I.; Branitskiy, A. Applying Big Data Processing and Machine Learning Methods for Mobile Internet of Things Security Monitoring. J. Internet Serv. Inf. Secur. 2017, 8, 54–63. [Google Scholar]
- Kotenko, I.; Saenko, I.; Kushnerevich, A. Parallel big data processing for security monitoring in Internet of Things networks. J. Wirel. Netw. Ubiquitous Comput. Dependable Appl. 2018, 8, 60–74. [Google Scholar]
- Afza, A.; Zaidi, S.A.R.; Shakir, M.Z.; Imran, M.A.; Ghogho, M. The Cognitive Internet of Things: A Unified Perspective. IEEE Mob. Netw. Appl. 2015, 20, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.; Zang, W.; Gu, Q.; Yu, M. Robust detection of rogue signals in cooperative spectrum sensing. J. Internet Serv. Inf. Secur. 2015, 5, 4–23. [Google Scholar]
- Mitola, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. Ph.D. Thesis, KTH Royal Institute of Technol, Stockholm, Sweden, December 2000. [Google Scholar]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Goldsmith, A.; Jafar, S.; Maric, I.; Srinivasa, S. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proc. IEEE 2009, 97, 894–914. [Google Scholar] [CrossRef]
- Rajesh, K.S.; Danda, B.R. Advances on Security Threats and Countermeasures for Cognitive Radio Networks: A Survey. IEEE Commun. Surv. Tutor. 2015, 17, 1023–1043. [Google Scholar]
- Li, J.; Feng, Z.; Feng, Z.; Zhang, P. A Survey of Security Issues in Cognitive Radio Networks. IEEE J. Mag. China Commun. 2015, 12, 132–150. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Hoang, T.M.; Shin, O.S. Secrecy capacity of the primary system in a cognitive radio network. IEEE Trans. Veh. Technol. 2015, 64, 3834–38435. [Google Scholar] [CrossRef]
- Yulong, Z.; Xianbin, W.; Weiming, S. Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks. IEEE Trans. Commun. 2013, 61, 5103–5113. [Google Scholar] [Green Version]
- Zhihui, S.; Yi, Q.; Song, C. On physical layer security for cognitive radio networks. IEEE Netw. 2013, 27, 28–33. [Google Scholar] [CrossRef]
- Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, N.; Cheng, N.; Mark, J.W.; Shen, X.S. Cooperative spectrum access towards secure information transfer for CRNs. IEEE J. Sel. Areas Commun. 2013, 31, 2453–2464. [Google Scholar] [CrossRef]
- Mokari, N.; Parsaeefard, S.; Saeedi, H.; Azmi, P. Cooperative secure resource allocation in cognitive radio networks with guaranteed secrecy rate for primary users. IEEE Trans. Wirel. Commun. 2014, 13, 1058–1073. [Google Scholar] [CrossRef]
- Xu, D.; Li, Q. Resource allocation for cognitive radio with primary user secrecy outage constraint. IEEE Syst. J. 2018, 12, 893–904. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.-M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1814–1827. [Google Scholar] [CrossRef]
- Nguyen, V.-D.; Duong, T.Q.; Dobre, O.A.; Shin, O.-S. Joint information and jamming beamforming for secrecy rate maximization in cognitive radio networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2609–2623. [Google Scholar] [CrossRef]
- Elkashlan, M.; Wang, L.; Duong, T.Q.; Karagiannidis, G.K.; Nallanathan, A. On the security of cognitive radio networks. IEEE Trans. Veh. Technol. 2015, 64, 3790–3795. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, H.; Vorobyov, S.A.; Chen, J.; Zhang, H. Secure communications in underlay cognitive radio networks: User scheduling and performance analysis. IEEE Commun. Lett. 2016, 20, 1191–1194. [Google Scholar] [CrossRef]
- Zou, Y. Physical-layer security for spectrum sharing systems. IEEE Trans. Wirel. Commun. 2017, 16, 1319–1329. [Google Scholar] [CrossRef]
- Pei, Y.; Liang, Y.-C.; Teh, K.C.; Li, K. Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Trans. Signal Process. 2011, 59, 1683–1693. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, M.; Skoglund, M.; Poor, H.V. Secure degrees of freedom of wireless networks using artificial noise alignment. IEEE Trans. Commun. 2015, 63, 2632–2646. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, P.; Xing, L.; Wu, H.; Seo, J.T.; You, I. Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things. Sensors 2018, 18, 4257. https://doi.org/10.3390/s18124257
Xie P, Xing L, Wu H, Seo JT, You I. Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things. Sensors. 2018; 18(12):4257. https://doi.org/10.3390/s18124257
Chicago/Turabian StyleXie, Ping, Ling Xing, Honghai Wu, Jung Taek Seo, and Ilsun You. 2018. "Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things" Sensors 18, no. 12: 4257. https://doi.org/10.3390/s18124257