Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS
<p>Light detection and ranging (LiDAR) and ultrasonic sensor of the ground phenotyping system.</p> "> Figure 2
<p>Schematic diagram showing the scanning areas of LiDAR and ultrasonic sensors at each measurement.</p> "> Figure 3
<p>Customized LabVIEW program: (<b>a</b>) front panel; (<b>b</b>) flowchart of block diagram.</p> "> Figure 4
<p>The Cartesian coordinate system for LiDAR point cloud at each measurement.</p> "> Figure 5
<p>An example of raw LiDAR point cloud at each measurement.</p> "> Figure 6
<p>The slanting issue of the phenocart.</p> "> Figure 7
<p>Digital surface model (DSM) map of the investigated 100 plots with plot delineation.</p> "> Figure 8
<p>Statistical results of heights extracted at different percentiles from processed LiDAR point clouds over five data collection campaigns: (<b>a</b>) RMSE; (<b>b</b>) bias; (<b>c</b>) R<sup>2</sup>.</p> "> Figure 9
<p>Manually measured canopy heights versus instrument estimated canopy heights: (<b>a</b>) ultrasonic sensors; (<b>b</b>) UAS; (<b>c</b>) LiDAR.</p> "> Figure 10
<p>Two scenarios where ultrasonic sensor estimations disagree with manual measurements.</p> "> Figure A1
<p>An example of Y-Z plane rotation correction: (<b>a</b>) Point cloud before rotation; (<b>b</b>) Fit a linear curve to points on Y-Z plane; (<b>c</b>) Rotate points on Y-Z plane by the angle θ; (<b>d</b>) Point cloud after rotation.</p> "> Figure A2
<p>An example of extracting coarse alleyway point clouds: (<b>a</b>) point cloud before rotation; (<b>b</b>) line graph before sorting; (<b>c</b>) line graph after sorting; (<b>d</b>) smoothed line; (<b>e</b>) positions of the four most significant changes; (<b>f</b>) deletion of points beyond the desired range.</p> "> Figure A3
<p>An example of extracting a refined alleyway point cloud: (<b>a</b>) point cloud of ground before cleaning; (<b>b</b>) point cloud kernel density in the Z dimension; (<b>c</b>) first derivative of the kernel density; (<b>d</b>) point cloud of ground after cleaning.</p> "> Figure A4
<p>An example of X-Z plane rotation correction: (<b>a</b>) point cloud of ground before rotation; (<b>b</b>) linear curve fitted to ground points on the X-Z plane; (<b>c</b>) rotation of points on the X-Z plane by the angle φ; (<b>d</b>) point cloud after rotation.</p> "> Figure A5
<p>An example of ground baseline correction: (<b>a</b>) point cloud of ground before shifting; (<b>b</b>) the mean in the Z dimension; (<b>c</b>) points on the X-Z plane shifted by the offset; (<b>d</b>) point cloud after shifting.</p> "> Figure A6
<p>An example of splitting a point cloud: (<b>a</b>) point cloud of ground after rotation and shifting; (<b>b</b>) the mean in the X dimension for each side; (<b>c</b>) point cloud of each plot after splitting.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Arrangement
2.2. Ground Phenotyping System
2.2.1. Hardware
2.2.2. Software
2.2.3. Height Extraction from LiDAR Point Clouds
2.3. UAS
2.3.1. Hardware
2.3.2. Flight Missions
2.3.3. Image Processing
2.3.4. Plant Height Extraction
3. Results
3.1. Raw Point Clouds versus Processed Point Clouds
3.2. LiDAR Height Estimation Performace by Date, Manual Method and Plot Position
3.3. Optimal Pixel Value Percentiles of Plant Height Map from UAS
3.4. Height Estimation Comparison between LiDAR, Ultrasonic Sensor and UAS
4. Discussion
4.1. Ultrasonic Sensor
4.2. UAS
4.3. LiDAR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Read Files
Appendix A.2. Y-Z Plane and X-Y Plane Rotation Correction
Appendix A.3. X-Z Plane Rotation Correction
Appendix A.4. Ground Baseline Correction
Appendix A.5. Split Point Cloud
References
- Bhatta, M.; Eskridge, K.M.; Rose, D.J.; Santra, D.K.; Baenziger, P.S.; Regassa, T. Seeding rate, genotype, and topdressed nitrogen effects on yield and agronomic characteristics of winter wheat. Crop Sci. 2017, 57, 951–963. [Google Scholar] [CrossRef]
- Navabi, A.; Iqbal, M.; Strenzke, K.; Spaner, D. The relationship between lodging and plant height in a diverse wheat population. Can. J. Plant Sci. 2006, 86, 723–726. [Google Scholar] [CrossRef] [Green Version]
- Schirrmann, M.; Hamdorf, A.; Garz, A.; Ustyuzhanin, A.; Dammer, K.H. Estimating wheat biomass by combining image clustering with crop height. Comput. Electron. Agric. 2016, 121, 374–384. [Google Scholar] [CrossRef]
- Mao, S.-L.; Wei, Y.-M.; Cao, W.; Lan, X.-J.; Yu, M.; Chen, Z.-M.; Chen, G.-Y.; Zheng, Y.-L. Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 2010, 174, 343–356. [Google Scholar] [CrossRef]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- White, J.W.; Andrade-Sanchez, P.; Gore, M.A.; Bronson, K.F.; Coffelt, T.A.; Conley, M.M.; Feldmann, K.A.; French, A.N.; Heun, J.T.; Hunsaker, D.J.; et al. Field-based phenomics for plant genetics research. Field Crops Res. 2012, 133, 101–112. [Google Scholar] [CrossRef]
- Virlet, N.; Sabermanesh, K.; Sadeghi-Tehran, P.; Hawkesford, M.J. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 2017, 44, 143–153. [Google Scholar] [CrossRef]
- Underwood, J.; Wendel, A.; Schofield, B.; McMurray, L.; Kimber, R. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J. Field Robot. 2017, 34, 1061–1083. [Google Scholar] [CrossRef]
- Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy 2014, 4, 349–379. [Google Scholar] [CrossRef]
- Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.; Sirault, X.R.R. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. Front. Plant Sci. 2018, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tang, L.; Whitham, S.A.; Mei, Y. A robotic platform for corn seedling morphological traits characterization. Sensors 2017, 17, 2082. [Google Scholar] [CrossRef] [PubMed]
- Klose, R.; Penlington, J.; Ruckelshausen, A. Usability of 3D time-of-flight cameras for automatic plant phenotyping. Bornimer Agrartech. Berichte 2011, 69, 93–105. [Google Scholar]
- Van Der Heijden, G.; Song, Y.; Horgan, G.; Polder, G.; Dieleman, A.; Bink, M.; Palloix, A.; Van Eeuwijk, F.; Glasbey, C. SPICY: Towards automated phenotyping of large pepper plants in the greenhouse. Funct. Plant Biol. 2012, 39, 870–877. [Google Scholar] [CrossRef]
- Cai, J.; Kumar, P.; Chopin, J.; Miklavcic, S.J. Land-based crop phenotyping by image analysis: Accurate estimation of canopy height distributions using stereo images. PLoS ONE 2018, 13, e0196671. [Google Scholar] [CrossRef] [PubMed]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A.H. In-field high-throughput phenotyping of cotton plant height using LiDAR. Remote Sens. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Barker, J.; Zhang, N.; Sharon, J.; Steeves, R.; Wang, X.; Wei, Y.; Poland, J. Development of a field-based high-throughput mobile phenotyping platform. Comput. Electron. Agric. 2016, 122, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi-Tehran, P.; Virlet, N.; Sabermanesh, K.; Hawkesford, M.J. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping. Plant Methods 2017, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Tilly, N.; Aasen, H.; Bareth, G. Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sens. 2015, 7, 11449–11480. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, N.; Taylor, R.K.; Raun, W.R. Improvement of a ground-LiDAR-based corn plant population and spacing measurement system. Comput. Electron. Agric. 2015, 112, 92–101. [Google Scholar] [CrossRef]
- Singh, K.K.; Chen, G.; Vogler, J.B.; Meentemeyer, R.K. When Big Data are Too Much: Effects of LiDAR Returns and Point Density on Estimation of Forest Biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3210–3218. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.K.; Frazier, A.E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 2018, 39, 1–21. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Sharma, B.; Ritchie, G.L. High-throughput phenotyping of cotton in multiple irrigation environments. Crop Sci. 2015, 55, 958–969. [Google Scholar] [CrossRef]
- Andrade-Sanchez, P.; Gore, M.A.; Heun, J.T.; Thorp, K.R.; Carmo-Silva, A.E.; French, A.; Salvucci, M.E.; White, J.W. Development and evaluation of a field-based, high-thoughput phenotyping platform. Funct. Plant Biol. 2014, 41, 68–79. [Google Scholar] [CrossRef]
- Pittman, J.J.; Arnall, D.B.; Interrante, S.M.; Moffet, C.A.; Butler, T.J. Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors 2015, 15, 2920–2943. [Google Scholar] [CrossRef] [PubMed]
- Farooque, A.A.; Chang, Y.K.; Zaman, Q.U.; Groulx, D.; Schumann, A.W.; Esau, T.J. Performance evaluation of multiple ground based sensors mounted on a commercial wild blueberry harvester to sense plant height, fruit yield and topographic features in real-time. Comput. Electron. Agric. 2013, 91, 135–144. [Google Scholar] [CrossRef]
- Chang, Y.K.; Zaman, Q.U.; Rehman, T.U.; Farooque, A.A.; Esau, T.; Jameel, M.W. A real-time ultrasonic system to measure wild blueberry plant height during harvesting. Biosyst. Eng. 2017, 157, 35–44. [Google Scholar] [CrossRef]
- Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards. Comput. Electron. Agric. 2013, 99, 236–247. [Google Scholar] [CrossRef]
- Barmeier, G.; Mistele, B.; Schmidhalter, U. Referencing laser and ultrasonic height measurements of barleycultivars by using a herbometre as standard. Crop Pasture Sci. 2016, 67, 1215–1222. [Google Scholar] [CrossRef]
- Scotford, I.M.; Miller, P.C.H. Combination of Spectral Reflectance and Ultrasonic Sensing to monitor the Growth of Winter Wheat. Biosyst. Eng. 2004, 87, 27–38. [Google Scholar] [CrossRef]
- Andújar, D.; Weis, M.; Gerhards, R. An ultrasonic system for weed detection in cereal crops. Sensors 2012, 12, 17343–17357. [Google Scholar] [CrossRef] [PubMed]
- Geipel, J.; Link, J.; Claupein, W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014, 6, 10335–10355. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Varela, S.; Assefa, Y.; Vara Prasad, P.V.; Peralta, N.R.; Griffin, T.W.; Sharda, A.; Ferguson, A.; Ciampitti, I.A. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Front. Plant Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Haghighattalab, A.; Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Application of geographically weighted regression to improve grain yield prediction from unmanned aerial system imagery. Crop Sci. 2017, 57, 2478–2489. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.H. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; de Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Li, C. Height estimation for blueberry bushes using LiDAR based on a field robotic platform. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; pp. 2–12. [Google Scholar] [CrossRef]
- Friedli, M.; Kirchgessner, N.; Grieder, C.; Liebisch, F.; Mannale, M.; Walter, A. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods 2016, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 2016, 128, 181–192. [Google Scholar] [CrossRef]
- Demir, N.; Sönmez, N.K.; Akar, T.; Ünal, S. Automated Measurement of Plant Height of Wheat Genotypes Using a DSM Derived From UAV Imagery. Proceedings 2018, 2, 350. [Google Scholar] [CrossRef]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D Point cloud based object maps for household environments. Robot. Auton. Syst. 2008, 56, 927–941. [Google Scholar] [CrossRef]
Data Collection Campaign | Growth Stage | Manual | Ground System | UAS | |
---|---|---|---|---|---|
Date | Method | Date | Date | ||
1st | Jointing stage: Feekes 6 | 7 May | A | 7 May | 7 May |
2nd | Flag leaf stage: Feekes 8 | 15 May | A | 15 May | 15 May |
3rd | Boot stage: Feekes 9 | 23 May | B | 23 May | 21 May |
4th | Grain filling period: Feekes 10.5.3 | 31 May | B | 31 May | 1 June |
5th | Physiological maturity: Feekes 11 | 16 June | B | 15 June | 18 June |
Data Collection Campaign | 1st | 2nd | 3rd | 4th | 5th | |
---|---|---|---|---|---|---|
Raw Point Clouds | Minimum RMSE (m) | 0.0462 | 0.0389 | 0.0643 | 0.0467 | 0.0521 |
Optimal Percentile | 67.5th | 85th | 99.5th | 99th | 99.5th | |
Processed Point Clouds | Minimum RMSE (m) | 0.0290 | 0.0300 | 0.0354 | 0.0407 | 0.0420 |
Optimal Percentile | 60th | 91st | 99th | 99th | 99.5th |
Category | Method A | Method B | All | |||
---|---|---|---|---|---|---|
Number of Plots | 200 | 300 | 500 | |||
Minimum RMSE (m) | 0.0478 | 0.0398 | 0.0657 | |||
Optimal Percentile | 82nd | 99th | 98th | |||
Sub-Category | Side | Middle | Side | Middle | Side | Middle |
Number of Plots | 140 | 60 | 200 | 100 | 340 | 160 |
Minimum RMSE (m) | 0.0436 | 0.0491 | 0.0395 | 0.0327 | 0.0649 | 0.0624 |
Optimal Percentile | 77th | 89th | 99th | 99.5th | 97th | 99th |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Li, J.; Bhatta, M.; Shi, Y.; Baenziger, P.S.; Ge, Y. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Sensors 2018, 18, 3731. https://doi.org/10.3390/s18113731
Yuan W, Li J, Bhatta M, Shi Y, Baenziger PS, Ge Y. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Sensors. 2018; 18(11):3731. https://doi.org/10.3390/s18113731
Chicago/Turabian StyleYuan, Wenan, Jiating Li, Madhav Bhatta, Yeyin Shi, P. Stephen Baenziger, and Yufeng Ge. 2018. "Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS" Sensors 18, no. 11: 3731. https://doi.org/10.3390/s18113731