Multi-Channel Convolutional Neural Networks Architecture Feeding for Effective EEG Mental Tasks Classification
<p>(<b>Top</b>) Mental tasks classes for Subject 1 (<b>a</b>) and Subject 2 (<b>b</b>) test sessions; and (<b>c</b>) mental tasks classes for Subject 3 test session.</p> "> Figure 2
<p>Calculation of the first component of a feature map (3), with a <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> filter (1) applied to <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> data (2). The red square within the input data (2) represents the actual region, where the filter (1) is applied to produce the first component of (3) according to Equation (<a href="#FD1-sensors-18-03451" class="html-disp-formula">1</a>).</p> "> Figure 3
<p>Multi-channel CNN architecture (CNN96). Architectural details are presented in <a href="#sensors-18-03451-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>The AlexNet multichannel variation developed for the architecture comparison and performance analysis (<b>a</b>); and the VGG-16 multichannel variation developed for the architecture comparison and performance analysis (<b>b</b>).</p> "> Figure 5
<p>The adaptation of Cecotti’s multi-channel network architecture to our problem.</p> "> Figure 6
<p>(<b>Top</b>) Accuracy change over iterations for Subjects 1 and 2 dataset training; and (<b>Bottom</b>) accuracy change over iterations for Subject 3 dataset training.</p> "> Figure 6 Cont.
<p>(<b>Top</b>) Accuracy change over iterations for Subjects 1 and 2 dataset training; and (<b>Bottom</b>) accuracy change over iterations for Subject 3 dataset training.</p> "> Figure 7
<p>Learning rate over iterations based on the same learning rate functions as those in <a href="#sensors-18-03451-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>(<b>Top</b>) Learning curves for Subject 1 and 2 dataset training; and (<b>Bottom</b>) learning curves for Subject 3 dataset training.</p> ">
Abstract
:1. Introduction
2. State of the Art
- other mental tasks, such as:
3. Dataset
- the imagination of repetitive left hand movements (Class 2);
- the imagination of repetitive right hand movements (Class 3); and
- the generation of words beginning with the same random letter (Class 7).
4. Method
- It separates CNN processing into isolated channels, between which there is no data flow, until the fully connected layer.
- The two convolutionary layers in each channel are directly connected without isolating them with the subsampling layer; all typical CNN solutions interweave each CNN layer with a subsampling layer.
- Input domain for the data is frequency with its super sampling into 12 sub-bands.
- A single channel to the first convolutionary layer contains a time window for a single subband-electrode juxtaposition.
- It enables multi-class problem solving for pure EEG as opposed to image or other data types.
5. Optimization of the Learning Process
- manipulation of layers base functions parameters, such as the number of outputs and kernel size (PARMOD phase); and
- testing selected learning rate modification functions for more training flexibility (LEARNOP phase).
5.1. PARMOD Phase
5.2. LFMOD Phase
5.3. LEARNOP Phase
6. Results
6.1. PARMOD Phase
6.2. LFMOD Phase
6.3. LEARNOP Phase
6.4. Effectiveness and Generalization Errors
6.5. ROC Analysis
7. Discussion
7.1. Optimization Phases
7.2. Comparative Analysis of CNN Architectures
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szajerman, D.; Warycha, M.; Antonik, A.; Wojciechowski, A. Popular Brain Computer Interfaces for Game Mechanics Control. In Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, 2016; pp. 123–134. [Google Scholar] [CrossRef]
- Zhuang, J.; Yin, G. Motion control of a four-wheel-independent-drive electric vehicle by motor imagery EEG based BCI system. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017. [Google Scholar] [CrossRef]
- Duan, F.; Lin, D.; Li, W.; Zhang, Z. Design of a Multimodal EEG-based Hybrid BCI System with Visual Servo Module. IEEE Trans. Auton. Ment. Dev. 2015, 7, 332–341. [Google Scholar] [CrossRef]
- Su, Z.; Xu, X.; Ding, J.; Lu, W. Intelligent wheelchair control system based on BCI and the image display of EEG. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October 2016. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Li, C.; Sun, S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. Opt. Int. J. Light Electron Opt. 2017, 130, 11–18. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. arXiv, 2016; arXiv:1611.08024. [Google Scholar]
- Wang, Z.; Lyu, S.; Ji, Q. Deep Feature Learning Using Target Priors with Applications in ECoG Signal Decoding for BCI. In Proceedings of the International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 1785–1791. [Google Scholar]
- Cecotti, H.; Gräser, A. Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Shamwell, J.; Lee, H.; Kwon, H.; Marathe, A.R.; Lawhern, V.; Nothwang, W. Single-trial EEG RSVP classification using convolutional neural networks. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications VIII, Baltimore, MD, USA, 25 May 2016. [Google Scholar] [CrossRef]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, N. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. arXiv, 2016; arXiv:1511.06448. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, 2015; arXiv:1409.1556. [Google Scholar]
- Szajerman, D.; Smagur, A.; Opalka, S.; Wojciechowski, A. Effective BCI mental tasks classification with adaptively solved convolutional neural networks. In Proceedings of the 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland, 14–16 September 2017. [Google Scholar] [CrossRef]
- Del Millán, J.R. On the need for on-line learning in brain-computer interfaces. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004. [Google Scholar] [CrossRef] [Green Version]
- Blankertz, B.; Muller, K.; Krusienski, D.; Schalk, G.; Wolpaw, J.; Schlogl, A.; Pfurtscheller, G.; Millan, J.; Schroder, M.; Birbaumer, N. The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; NIPS: Montréal, QC, Canada, 2012. [Google Scholar]
- Puchala, D.; Yatsymirskyy, M.M. Joint compression and encryption of visual data using orthogonal parametric transforms. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 378–382. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, J. A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Shah, S.; Kumar, R. Classification of mental tasks from EEG data using backtracking search optimization based neural classifier. Neurocomputing 2015, 166, 397–403. [Google Scholar] [CrossRef]
- Puchala, D. Approximating the KLT by Maximizing the Sum of Fourth-Order Moments. IEEE Signal Process. Lett. 2013, 20, 193–196. [Google Scholar] [CrossRef]
- Nasehi, S.; Pourghassem, H. Mental Task Classification Based on HMM and BPNN. In Proceedings of the 2013 International Conference on Communication Systems and Network Technologies, Gwalior, Indian, 6–8 April 2013. [Google Scholar] [CrossRef]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 2007, 4, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- Oskoei, M.; Gan, J.; Hu, H. Adaptive schemes applied to online SVM for BCI data classification. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar] [CrossRef]
- Wojciechowski, A.; Staniucha, R. Mouth features extraction for emotion classification. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Gdansk, Poland, 11–14 September 2016. [Google Scholar] [CrossRef]
- Walczak, J.; Wojciechowski, A. Improved Gender Classification Using Discrete Wavelet Transform and Hybrid Support Vector Machine. Mach. Gr. Vis. 2016, 25, 27–34. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification (Pt.1); Wiley-Interscience: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hasan, B.A.S.; Gan, J.Q. Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier. In Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2009; pp. 96–106. [Google Scholar] [CrossRef]
- Mora, N.; Munari, I.D.; Ciampolini, P. Subject-independent, SSVEP-based BCI: Trading off among accuracy, responsiveness and complexity. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015. [Google Scholar] [CrossRef]
- Kasakawa, S.; Yamanishi, T.; Takahashi, T.; Ueno, K.; Kikuchi, M.; Nishimura, H. Approaches of Phase Lag Index to EEG Signals in Alzheimer’s Disease from Complex Network Analysis. In Innovation in Medicine and Healthcare 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 459–468. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Hu, Z.; Du, X.; Wu, W.; Xu, C.; Wang, X.; Li, S. Complexity Analysis of Electroencephalogram Dynamics in Patients with Parkinson’s Disease. Parkinson’s Dis. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maksymiv, O.; Rak, T.; Menshikova, O. Deep convolutional network for detecting probable emergency situations. In Proceedings of the 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 23–27 August 2016. [Google Scholar] [CrossRef]
- Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 19–22 July 2011; pp. 1237–1242. [Google Scholar]
- Mońko, J.; Stasiak, B. Note Onset Detection with a Convolutional Neural Network in Recordings of Bowed String Instruments. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 173–185. [Google Scholar] [CrossRef]
- Schluter, J.; Bock, S. Improved musical onset detection with Convolutional Neural Networks. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar] [CrossRef]
- Stasiak, B.; Tarasiuk, P.; Michalska, I.; Tomczyk, A.; Szczepaniak, P.S. Localization of Demyelinating Plaques in MRI using Convolutional Neural Networks. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, Porto, Portugal, 21–23 February 2017. [Google Scholar] [CrossRef]
- Tabar, Y.R.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2016, 14, 016003. [Google Scholar] [CrossRef] [PubMed]
- Sakhavi, S.; Guan, C.; Yan, S. Parallel convolutional-linear neural network for motor imagery classification. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2736–2740. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, Y. Convolutional deep belief networks for feature extraction of EEG signal. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 2850–2853. [Google Scholar] [CrossRef]
- Manor, R.; Mishali, L.; Geva, A.B. Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface. Front. Comput. Neurosci. 2016, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Manor, R.; Geva, A.B. Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI. Front. Comput. Neurosci. 2015, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, R.; Zhang, C.; Wang, F. Predicting Seizures from Electroencephalography Recordings: A Knowledge Transfer Strategy. In Proceedings of the 2016 IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA, 4–7 October 2016. [Google Scholar] [CrossRef]
- Antoniades, A.; Spyrou, L.; Took, C.C.; Sanei, S. Deep learning for epileptic intracranial EEG data. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Thodoroff, P.; Pineau, J.; Lim, A. Learning Robust Features using Deep Learning for Automatic Seizure Detection. In Proceedings of the Machine Learning for Healthcare Conference, Angeles, CA, USA, 19–20 August 2016. [Google Scholar]
- Page, A.; Shea, C.; Mohsenin, T. Wearable seizure detection using convolutional neural networks with transfer learning. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. [Google Scholar] [CrossRef]
- Sun, X.; Qian, C.; Chen, Z.; Wu, Z.; Luo, B.; Pan, G. Remembered or Forgotten?—An EEG-Based Computational Prediction Approach. PLoS ONE 2016, 11, e0167497. [Google Scholar] [CrossRef] [PubMed]
- Hajinoroozi, M.; Mao, Z.; Jung, T.P.; Lin, C.T.; Huang, Y. EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 2016, 47, 549–555. [Google Scholar] [CrossRef]
- Chai, R.; Ling, S.H.; San, P.P.; Naik, G.R.; Nguyen, T.N.; Tran, Y.; Craig, A.; Nguyen, H.T. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks. Front. Neurosci. 2017, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Stober, S. Learning discriminative features from electroencephalography recordings by encoding similarity constraints. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017. [Google Scholar] [CrossRef]
- Stober, S.; Cameron, D.J.; Grahn, J.A. Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography Recordings. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NY, USA, 2014; pp. 1449–1457. [Google Scholar]
- Yang, H.; Sakhavi, S.; Ang, K.K.; Guan, C. On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Jadhav, P.; Adapa, B.; Acharyya, A.; Naik, G.R. Online and automated reliable system design to remove blink and muscle artefact in EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Feis, R.A.; Smith, S.M.; Filippini, N.; Douaud, G.; Dopper, E.G.P.; Heise, V.; Trachtenberg, A.J.; van Swieten, J.C.; van Buchem, M.A.; Rombouts, S.A.R.B.; et al. ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Front. Neurosci. 2015, 9, 395. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.N.; Shanamugan, D.; Chourasia, A.; Ghole, A.R.; Acharyya, A.; Naik, G. Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1881–1884. [Google Scholar] [CrossRef]
- Lin, C.J.; Hsieh, M.H. Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 2009, 72, 1121–1130. [Google Scholar] [CrossRef]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Bottou, L. Stochastic Gradient Descent Tricks. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar] [CrossRef]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv, 2012; arXiv:1212.5701. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv, 2015; arXiv:1412.6980. [Google Scholar]
- Galán, F.; Oliva, F.; Guàrdia, J. BCI Competition III. Dataset V: Algorithm Description. Available online: http://www.bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf (accessed on 13 October 2018).
- Bhattacharya, S.; Haddad, R.J.; Ahad, M. A multiuser EEG based imaginary motion classification using neural networks. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015. [Google Scholar] [CrossRef]
- Labatut, V.; Cherifi, H. Accuracy Measures for the Comparison of Classifiers. arXiv, 2012; arXiv:1207.3790. [Google Scholar]
Layer | Layer Type | # Filters | Size | # Params | Output Dimension | Activation | Mode |
---|---|---|---|---|---|---|---|
1 | Input | - | - | - | (96, 16) | - | - |
Slice | - | - | - | (1, 96, 16) | - | - | |
Conv1D | 50 | (1, 5) | 96 × 50 | (50, 96, 16) | Linear | valid | |
2 | Conv1D | 20 | (1, 3) | 96 × 20 | (20, 96, 16) | Linear | valid |
Pool | - | (2, 1) | 1 × 20 | (10, 96, 16) | - | - | |
Activation | - | - | - | (10, 96, 16) | ReLU | - | |
3 | FullyConnected | - | - | - | 96 | - | - |
InnerProduct | 96 | - | 96 | 96 | Linear | - | |
Activation | - | - | - | 96 | Sigmoid | - | |
4 | InnerProduct | 96 | - | 96 | 3 | Linear | - |
Loss | - | - | - | - | - | - |
Values and Corresponding Network Parameters | Average (Rounded) Accuracy Progress Change Over Training (%) |
---|---|
—CONV1 filter size () | |
—CONV1 filter size () | |
—CONV1 filter size () | |
—CONV1 filter size () | |
—CONV2 filter size () | |
—CONV2 filter size () | |
—PL1 outputs | |
—PL1 outputs | |
—PL1 outputs | |
—PL1 outputs |
Effectiveness | Subject 1 | Subject 2 | Subject 3 | Average |
---|---|---|---|---|
CNN96-16sam | 81.40 | 72.10 | 55.70 | 69.73 |
CNN96-8sam | 79.90 | 68.53 | 53.05 | 67.16 |
Generalization Error | Subject 1 | Subject 2 | Subject 3 | Average |
---|---|---|---|---|
CNN96-8sam | 5.04 | 4.54 | 11.59 | 7.05 |
CNN96-16sam | 2.79 | 2.16 | 10.73 | 5.22 |
Subject 1 | Subject 2 | Subject 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 7 | 2 | 3 | 7 | 2 | 3 | 7 | ||||
predicted class | 2 | 905 | 213 | 61 | 2 | 532 | 112 | 223 | 2 | 263 | 114 | 104 |
3 | 64 | 725 | 157 | 3 | 183 | 917 | 178 | 3 | 592 | 875 | 211 | |
7 | 71 | 86 | 1222 | 7 | 149 | 123 | 1055 | 7 | 345 | 149 | 805 |
Actual Class | ||||
---|---|---|---|---|
Total = 3504 | 2 | Non-2 | ||
predicted | 2 | 905 | 274 | PPV = 0.7676 |
class | Non-2 | 135 | 2190 | NPV = 0.9419 |
TPR = 0.8702 | TNR = 0.8888 | ACC = 0.8833 |
Subject | OSR | Class | ACC | TPR | TNR | PPV | NPV |
---|---|---|---|---|---|---|---|
1 | 0.8140 | 2 | 0.8833 | 0.8702 | 0.8888 | 0.7676 | 0.9419 |
3 | 0.8516 | 0.7080 | 0.9109 | 0.7664 | 0.8831 | ||
7 | 0.8930 | 0.8486 | 0.9239 | 0.8861 | 0.8974 | ||
2 | 0.7216 | 2 | 0.8084 | 0.6157 | 0.8722 | 0.6150 | 0.8726 |
3 | 0.8288 | 0.7974 | 0.8444 | 0.7175 | 0.8937 | ||
7 | 0.8061 | 0.7246 | 0.8649 | 0.7950 | 0.8129 | ||
3 | 0.5571 | 2 | 0.6603 | 0.2192 | 0.8916 | 0.5147 | 0.6853 |
3 | 0.6858 | 0.7491 | 0.6539 | 0.5215 | 0.8381 | ||
7 | 0.7681 | 0.7188 | 0.7914 | 0.6197 | 0.8561 | ||
mean | 0.6975 | 0.7984 | 0.6946 | 0.8491 | 0.6893 | 0.8535 | |
standard deviation | 0.1301 | 0.0812 | 0.1943 | 0.0830 | 0.1284 | 0.0731 |
Method | Subject 1 | Subject 2 | Subject 3 | Average |
---|---|---|---|---|
Cecotti * | 44.90 | 39.02 | 32.11 | 38.68 |
GANN | 69.32 | 66.32 | 44.40 | 58.01 |
BPNN | 76.02 | 65.89 | 51.14 | 64.34 |
CNN1 | 78.22 | 62.80 | 52.49 | 64.50 |
PSONN | 75.98 | 69.78 | 53.83 | 66.33 |
2DCNN-big | 80.74 | 67.89 | 52.98 | 67.20 |
IPSONN | 78.31 | 70.27 | 56.46 | 68.35 |
CNN96-8sam | 79.90 | 68.53 | 53.05 | 67.16 |
BSANN | 80.32 | 66.03 | 59.34 | 68.56 |
Galan ** | 79.60 | 70.31 | 56.02 | 68.64 |
CNN96-16sam | 81.40 | 72.10 | 55.70 | 69.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opałka, S.; Stasiak, B.; Szajerman, D.; Wojciechowski, A. Multi-Channel Convolutional Neural Networks Architecture Feeding for Effective EEG Mental Tasks Classification. Sensors 2018, 18, 3451. https://doi.org/10.3390/s18103451
Opałka S, Stasiak B, Szajerman D, Wojciechowski A. Multi-Channel Convolutional Neural Networks Architecture Feeding for Effective EEG Mental Tasks Classification. Sensors. 2018; 18(10):3451. https://doi.org/10.3390/s18103451
Chicago/Turabian StyleOpałka, Sławomir, Bartłomiej Stasiak, Dominik Szajerman, and Adam Wojciechowski. 2018. "Multi-Channel Convolutional Neural Networks Architecture Feeding for Effective EEG Mental Tasks Classification" Sensors 18, no. 10: 3451. https://doi.org/10.3390/s18103451
APA StyleOpałka, S., Stasiak, B., Szajerman, D., & Wojciechowski, A. (2018). Multi-Channel Convolutional Neural Networks Architecture Feeding for Effective EEG Mental Tasks Classification. Sensors, 18(10), 3451. https://doi.org/10.3390/s18103451