Concentric Ring Probe for Bioimpedance Spectroscopic Measurements: Design and Ex Vivo Feasibility Testing on Pork Oral Tissues
<p>A plane top view of the tip of a probe with two measuring ring electrodes around the central pin electrode. In the inner configuration, the voltage is applied between electrodes A and B, whereas in the outer configuration the voltage is applied between electrodes A and C (with B is acting as a ground).</p> "> Figure 2
<p>(<b>a</b>) Schematic overview of the experimental setup; (<b>b</b>) custom-made concentric ring probe with the surface of the probe head shown in the upper right corner of the picture.</p> "> Figure 3
<p>Non-biological samples, i.e., white tissue paper (<b>a</b>) and yellow towel (<b>b</b>), and biological samples, i.e., cucumber (<b>c</b>) and pork tongue (<b>d</b>), under testing.</p> "> Figure 4
<p>The complex division of bioimpedance spectroscopy (BIS) spectra for the same (<b>a</b>) cucumber and (<b>b</b>) tongue sample using the inner configuration shows the clear time-variant nature of the measurements. A total of five repeated scans were performed, and here the subsequent measurement is compared to the first one.</p> "> Figure 5
<p>The complex division of BIS spectra for the same (<b>a</b>) cucumber and (<b>b</b>) tongue sample using the outer with grounding configuration shows the clear time-variant nature of the measurements. A total of five repeated scans were performed, and here the subsequent measurement is compared to the first one.</p> "> Figure 6
<p>Bode plots of mean BIS spectra for different ex vivo pork oral tissue samples using (<b>a</b>) the inner configuration and (<b>b</b>) the outer with grounding configuration. Error bars represent the standard deviation of the mean value in one direction.</p> "> Figure 7
<p>Relative permittivity (<b>a</b>), loss factor (<b>b</b>), dissipation factor (<b>c</b>), and conductivity (<b>d</b>) determined for different ex vivo pork oral tissue samples on the basis of BIS measurements using the inner configuration. Data represent mean values and error bars indicate the standard deviation of the mean in one direction.</p> "> Figure 8
<p>Bode plot (magnitude, phase) comparisons between the inner and outer with grounding configurations separately for (<b>a</b>) buccal mucosa, (<b>b</b>) muscle, and (<b>c</b>) fat. Data represent mean values and error bars indicate the standard deviation of the mean in one direction.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Concentric Ring Probe
2.2. Measurement Setup
2.3. Optimization of the Measurement Protocol
2.4. Tissue Differentiation with Ex Vivo Pork Oral Samples
2.5. Statistical Analysis
Parallel capacitance | |
Capacitance of an empty measuring cell | |
Parallel resistance | |
Angular frequency | |
Permittivity of free space = 8.854 × 10−12 F⋅m−1 |
3. Results
3.1. Optimization of the Measurement Protocol with Different Phantom Materials
3.2. Effect of Loading Time
3.3. Tissue Differentiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Farah, C.S.; Woo, S.; Zain, R.B.; Sklavounou, A.; McCullough, M.J.; Lingen, M. Oral Cancer and Oral Potentially Malignant Disorders. Int. J. Dent. 2014, 2014, 853479. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Gentile, S.; Palmieri, F.; Paduano, F.; Tatullo, M. Correlation between Surgeon’s experience, surgery complexity and the alteration of stress related physiological parameters. PLoS ONE 2014, 9, e112444. [Google Scholar] [CrossRef] [PubMed]
- Neville, B.W.; Day, T.A. Oral cancer and Precancerous Lesions. CA Cancer J. Clin. 2002, 52. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, O.G. Bioimpedance and Bioelectricity Basics, 2nd ed.; Academic Press: Oxford, UK, 2008; ISBN 978-0-12-374004-5. [Google Scholar]
- Ollmar, S. A Device for Measurement of Electrical Impedance of Organic and Biological Materials. U.S. Patent 5,353,802, 11 October 1994. [Google Scholar]
- Åberg, P.; Nicander, I.; Holmgren, U.; Geladi, P.; Ollmar, S. Assessment of skin lesions and skin cancer using simple electrical impedance indices. Skin Res. Technol. 2003, 9, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, B.; Rutkove, S.B. Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 2017, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Deibele, J.M.; Luepschen, H.; Leonhardt, S. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol. Meas. 2008, 29, S1–S14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Jin, C.; Thiagalingam, A.; McEwan, A.L. A review on electrical impedance tomography for pulmonary perfusion imaging. Physiol. Meas. 2012, 33, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Orazio, A.I.; Fisher, M.D.; O’Shaushnessy, J. 2001 highlights from: 24th annual San Antonio breast cancer symposium. San Antonio, Texas, December 10–13, 2001. Clin. Breast Cancer 2002, 2, 260–265. [Google Scholar] [CrossRef]
- Tatullo, M.; Marrelli, M.; Amantea, M.; Paduano, F.; Santacroce, L.; Gentile, S.; Scacco, S. Bioimpedance Detection of Oral Lichen Planus Used as Preneoplastic Model. J. Cancer. 2015, 6, 976–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrei, M.; Pirvu, C.; Demetrescu, I. Electrochemical impedance spectroscopy in understanding the influence of ultrasonic dental scaling on the dental structure-dental filling interface. Eur. J. Oral Sci. 2014, 122, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Richter, I.; Alajbeg, I.; Boras, V.V.; Rogulj, A.A.; Brailo, V. Mapping electrical impedance spectra of the healthy oral mucosa: A pilot study. Acta. Stomatol. Croat. 2015, 49, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.A.; Machado-Aranda, D.; Ramanathan, T.; Molina, I.; Sundarajan, R. Electrical properties of biological tissues—An impedance spectroscopy study. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 15–18 October 2006; pp. 357–360. [Google Scholar] [CrossRef]
- Meroni, D.; Bovio, D.; Frisoli, P.A.; Aliverti, A. Measurement of electrical impedance in different ex-vivo tissues. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2311–2314. [Google Scholar] [CrossRef]
- Malvehy, J.; Hauschild, A.; Curiel-Lewandrowski, C.; Mohr, P.; Hofmann-Wellenhof, R.; Motley, R.; Berking, C.; Grossman, D.; Paoli, J.; Loquai, C.; et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: An international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br. J. Dermatol. 2014, 171, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.P.; Mangana, J.; Goldinger, S.; French, L.; Dummer, R.; Marghoob, A.A. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol. Clin. 2017, 35, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Åberg, P.; Nicander, I.; Hansson, J.; Geladi, P.; Holmgren, U.; Ollmar, S. Skin cancer identification using multifrequency electrical impedance—A potential screening tool. IEEE Trans. Biomed. Eng. 2004, 51, 2097–2102. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Birgersson, U.; Berking, C.; Henderson, C.; Trefzer, U.; Kemeny, L. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res. Technol. 2013, 19, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannacci, I.; Vescovi, P.; Manfredi, M.; Meleti, M. Non-invasive visual tools for diagnosis of oral cancer and dysplasia: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e305–e315. [Google Scholar] [CrossRef] [PubMed]
- Balmer, T.W.; Vesztergom, S.; Broekmann, P.; Stahel, A.; Büchler, P. Characterization of the electrical conductivity of bone and its correlation to osseous structure. Sci. Rep. 2018, 8, 8601. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.M.; Gregory, A.P.; Seppälä, J.; Lahtinen, T. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination. IEEE Trans. Microw. Theory Tech. 2016, 64, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Filho, P.B. Assessing applied pressure in impedance probe by single-zone force sensing resistors. Athens J. Technol. Eng. 2017, 4, 7–16. [Google Scholar]
- Keshtkar, A.; Keshtkar, A. The effect of applied pressure on the electrical impedance of the bladder tissue using small and large probes. J. Med. Eng. Technol. 2008, 32, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Glahder, J.; Norrild, B.; Persson, M.B.; Persson, B.R.R. Transfection of HeLa-Cells with pEGFP plasmid by impedance power-assisted electroporation. Biotechnol. Bioeng. 2005, 92, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Kalvøy, H.; Frich, L.; Grimnes, S.; Martinsen, Ø.G.; Hol, P.K.; Stubhaug, A. Impedance-based tissue discrimination for needle guidance. Physiol. Meas. 2009, 30, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Bouayad, H.; Schned, A.; Hartov, A.; Heaney, J.; Halter, R.J. A real-time electrical impedance sensing biopsy needle. IEEE Trans. Biomed. Eng. 2012, 59, 3327–3336. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, W.M.; Kim, K.; Jeong, W.I.; Seo, J.B.; Park, I. Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination. Sci. Rep. 2018, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Nebuya, S.; Noshiro, M.; Brown, B.H.; Smallwood, R.H.; Milnes, P. Detection of emboli in vessels using electrical impedance measurements—Phantom and electrodes. Physiol. Meas. 2005, 26, S111–S118. [Google Scholar] [CrossRef] [PubMed]
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef]
- Nasrollaholhosseini, S.H.; Herrera, D.S.; Besio, W.G. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 2426–2429. [Google Scholar] [CrossRef]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med. 2015, 45, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, R.T. Radio-Frequency and ELF Electromagnetic Energies; John Wiley & Sons: Hoboken, NJ, USA, 1995; pp. 29–30. [Google Scholar]
- Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 2009, 54, 4863–4878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancu, I.; Roberts, J.C.; Bulumulla, S.; Lee, S.-K. On conductivity, permittivity, apparent diffusion coefficient, and their usefulness as cancer markers at MRI frequencies. Magn. Reson. Med. 2015, 73, 2025–2029. [Google Scholar] [CrossRef] [PubMed]
- Tatullo, M.; Gentile, S.; Paduano, F.; Santacroce, L.; Marrelli, M. Crosstalk between oral and general health status in e-smokers. Medicine (Baltimore) 2016, 95, e5589. [Google Scholar] [CrossRef] [PubMed]
- Myllymaa, S.; Pirinen, S.; Myllymaa, K.; Suvanto, M.; Pakkanen, T.A.; Pakkanen, T.T.; Lappalainen, R. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures. Meas. Sci. Technol. 2012, 23, 125701. [Google Scholar] [CrossRef]
- Kaitainen, S.; Kutvonen, A.; Suvanto, M.; Pakkanen, T.T.; Lappalainen, R.; Myllymaa, S. Liquid silicone rubber (LSR) based dry bioelectrodes: Effect of surface micropillar structuring and silver coating on contact impedance. Sens. Actuators A-Phys. 2014, 206, 22–29. [Google Scholar] [CrossRef]
Frequency | Parameter | Palatinum | Buccal Mucosa | Fat | Muscle | p-Value |
---|---|---|---|---|---|---|
1 Hz | Magnitude (kΩ) | 12,738.3 ± 11,332.5 | 50.7 ± 2.4 | 56.1 ± 6.0 | 44.1 ± 2.3 | <0.001 |
Phase (°) | −8.6 ± 3.3 | −56.1 ± 3.4 | −54.3 ± 5.5 | −57.9 ± 1.5 | 0.004 | |
10 Hz | Magnitude (kΩ) | 9312.9 ± 7740.8 | 15.9 ± 2.98 | 15.8 ± 4.3 | 10.3 ± 0.6 | <0.001 |
Phase (°) | −24.6 ± 9.4 | −30.6 ± 4.8 | −44.0 ± 6.3 | −53.2 ± 1.3 | <0.001 | |
100 Hz | Magnitude (kΩ) | 3187.4 ± 2222.2 | 10.5 ± 2.9 | 6.2 ± 2.2 | 3.0 ± 0.3 | <0.001 |
Phase (°) | −47.2 ± 10.3 | −13.7 ± 0.6 | −31.2 ± 7.5 | −45.4 ± 2.5 | 0.002 | |
1 kHz | Magnitude (kΩ) | 923.1 ± 731.8 | 7.6 ± 1.2 | 3.5 ± 1.7 | 1.0 ± 0.1 | <0.001 |
Phase (°) | −53.4 ± 9.5 | −20.3 ± 6.8 | −17.3 ± 5.8 | −31.4 ± 2.1 | <0.001 | |
10 kHz | Magnitude (kΩ) | 244.4 ± 1925.2 | 3.5 ± 0.3 | 2.8 ± 1.6 | 0.6 ± 0.1 | <0.001 |
Phase (°) | −64.2 ± 5.4 | −37.0 ± 3.9 | −6.3 ± 2.2 | −10.2 ± 0.9 | <0.001 | |
100 kHz | Magnitude (kΩ) | 40.1 ± 26.1 | 1.2 ± 0.2 | 2.6 ± 1.5 | 0.6 ± 0.09 | <0.001 |
Phase (°) | −72.9 ± 10.4 | −38.2 ± 3.4 | −4.1 ± 1.2 | −2.9 ± 0.1 | 0.001 | |
1 MHz | Magnitude (kΩ) | 5.6 ± 2.6 | 0.5 ± 0.1 | 2.3 ± 1.2 | 0.5 ± 0.1 | 0.001 |
Phase (°) | −68.1 ± 16.2 | −22.4 ± 2.8 | −12.6 ± 6.8 | −2.7 ± 1.2 | <0.001 |
Frequency | Parameter | Palatinum | Buccal Mucosa | Fat | Muscle | p-Value |
---|---|---|---|---|---|---|
1 Hz | Magnitude (kΩ) | 8028.1 ± 6948.1 | 186.2 ± 47.8 | 76.2 ± 26.6 | 46.4 ± 5.1 | <0.001 |
Phase (°) | −9.1 ± 6.6 | −9.1 ± 1.1 | −53.3 ± 9 | −58.9 ± 4.2 | 0.005 | |
10 Hz | Magnitude (kΩ) | 6298.5 ± 5054.1 | 51.6 ± 10.1 | 20.6 ± 9.1 | 9.9 ± 1.2 | <0.001 |
Phase (°) | −22.0 ± 6.9 | −21.9 ± 6.7 | −39.0 ± 8.1 | −52.4 ± 1.1 | 0.001 | |
100 Hz | Magnitude(kΩ) | 2137.0 ± 1319.5 | 26.7 ± 2.1 | 10.5 ± 4.5 | 3.4 ± 0.4 | <0.001 |
Phase (°) | −47.0 ± 16.9 | −46.9 ± 4.0 | −17.1 ± 15.0 | −31.5 ± 4.7 | 0.014 | |
1 kHz | Magnitude (kΩ) | 436.7 ± 202.1 | 20.5 ± 2.1 | 10.4 ± 9.5 | 2.0 ± 0.3 | <0.001 |
Phase (°) | −57.6 ± 12.7 | −57.6 ± 2.4 | −7.0 ± 8.9 | −12.8 ± 2.7 | 0.002 | |
10 kHz | Magnitude (kΩ) | 100.4 ± 48.9 | 10.8 ± 2.5 | 9.6 ± 10.1 | 1.7 ± 0.3 | <0.001 |
Phase (°) | −55.9 ± 6.2 | −55.9 ± 5.9 | −2.8 ± 2.4 | −4.7 ± 0.8 | 0.001 | |
100 kHz | Magnitude (kΩ) | 27.5 ± 17.5 | 2.9 ± 0.9 | 9.4 ± 10.0 | 1.6 ± 0.3 | 0.001 |
Phase (°) | −55.3 ± 2.2 | −55.3 ± 5.7 | −2.2 ± 2.1 | −1.7 ± 0.2 | 0.001 | |
1 MHz | Magnitude (kΩ) | 6.9 ± 3.4 | 0.8 ± 0.1 | 8.6 ± 8.2 | 1.5 ± 0.3 | 0.001 |
Phase (°) | −46.7 ± 13 | −46.7 ± 7.5 | −9.5 ± 11.5 | −2.2 ± 0.3 | 0.002 |
Inner Configuration: Impedance Magnitude | |||||||
Tissue Comparison | 1 MHz | 100 kHz | 10 kHz | 1 kHz | 100 Hz | 10 Hz | 1 Hz |
Palatinum-buccal mucosa | 0.003 | 0.032 | 0.179 | 0.327 | 0.260 | 0.137 | 0.046 |
Palatinum-fat | 0.286 | 0.091 | 0.029 | 0.016 | 0.021 | 0.037 | 0.075 |
Palatinum-muscle | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Buccal mucosa-fat | 0.032 | 0.446 | 0.663 | 0.327 | 0.446 | 0.828 | 0.586 |
Buccal mucosa-muscle | 0.790 | 0.206 | 0.037 | 0.014 | 0.021 | 0.053 | 0.158 |
Fat-muscle | 0.017 | 0.011 | 0.042 | 0.072 | 0.059 | 0.034 | 0.014 |
Outer with Grounding Configuration: Impedance Magnitude | |||||||
Tissue Comparison | 1 MHz | 100 kHz | 10 kHz | 1 kHz | 100 Hz | 10 Hz | 1 Hz |
Palatinum-buccal mucosa | 0.001 | 0.053 | 0.210 | 0.210 | 0.305 | 0.305 | 0.305 |
Palatinum-fat | 0.845 | 0.238 | 0.035 | 0.035 | 0.024 | 0.024 | 0.024 |
Palatinum-muscle | 0.007 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Buccal mucosa-fat | 0.003 | 0.369 | 0.596 | 0.596 | 0.377 | 0.377 | 0.377 |
Buccal mucosa-muscle | 0.243 | 0.225 | 0.036 | 0.036 | 0.020 | 0.020 | 0.020 |
Fat-muscle | 0.018 | 0.011 | 0.069 | 0.069 | 0.099 | 0.099 | 0.099 |
Inner Configuration: Phase | |||||||
Tissue Comparison | 1 MHz | 100 kHz | 10 kHz | 1 kHz | 100 Hz | 10 Hz | 1 Hz |
Palatinum-buccal mucosa | 0.231 | 0.327 | 0.327 | 0.004 | 0.001 | 0.663 | 0.039 |
Palatinum-fat | 0.023 | 0.007 | <0.001 | <0.001 | 0.008 | 0.029 | 0.009 |
Palatinum-muscle | <0.001 | <0.001 | 0.008 | 0.066 | 0.449 | <0.001 | <0.001 |
Buccal mucosa-fat | 0.514 | 0.217 | 0.014 | 0.690 | 0.260 | 0.179 | 0.942 |
Buccal mucosa-muscle | 0.026 | 0.026 | 0.251 | 0.145 | 0.006 | 0.005 | 0.483 |
Fat-muscle | 0.053 | 0.230 | 0.087 | 0.021 | 0.044 | 0.072 | 0.437 |
Outer with Grounding Configuration: Phase | |||||||
Tissue Comparison | 1 MHz | 100 kHz | 10 kHz | 1 kHz | 100 Hz | 10 Hz | 1 Hz |
Palatinum-buccal mucosa | 0.543 | 0.649 | 0.210 | 0.176 | 0.008 | 0.184 | 0.044 |
Palatinum-fat | 0.021 | 0.010 | 0.000 | 0.003 | 0.008 | 0.072 | 0.011 |
Palatinum-muscle | <0.001 | <0.001 | 0.002 | 0.002 | 0.258 | <0.001 | 0.001 |
Buccal mucosa-fat | 0.185 | 0.091 | 0.146 | 0.077 | 0.702 | 0.837 | 0.883 |
Buccal mucosa-muscle | 0.020 | 0.142 | 0.159 | 0.243 | 0.070 | 0.052 | 0.470 |
Fat-muscle | 0.271 | 0.422 | 0.828 | 0.409 | 0.097 | 0.042 | 0.504 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emran, S.; Lappalainen, R.; Kullaa, A.M.; Myllymaa, S. Concentric Ring Probe for Bioimpedance Spectroscopic Measurements: Design and Ex Vivo Feasibility Testing on Pork Oral Tissues. Sensors 2018, 18, 3378. https://doi.org/10.3390/s18103378
Emran S, Lappalainen R, Kullaa AM, Myllymaa S. Concentric Ring Probe for Bioimpedance Spectroscopic Measurements: Design and Ex Vivo Feasibility Testing on Pork Oral Tissues. Sensors. 2018; 18(10):3378. https://doi.org/10.3390/s18103378
Chicago/Turabian StyleEmran, Shekh, Reijo Lappalainen, Arja M. Kullaa, and Sami Myllymaa. 2018. "Concentric Ring Probe for Bioimpedance Spectroscopic Measurements: Design and Ex Vivo Feasibility Testing on Pork Oral Tissues" Sensors 18, no. 10: 3378. https://doi.org/10.3390/s18103378