Horizontal Plasmonic Ruler Based on the Scattering Far-Field Pattern
<p>(<b>a</b>) Schematic of the two-metal block assembly when light propagates along the X-axis and the Y-axis with the electric field oriented in the vertical direction. (<b>b</b>) Scattering far-field spectra of the two-metal block assembly using light propagates along the X-axis and Y-axis. Simulated electric field distribution in the YZ, XZ plane and also XY plane with resonance wavelengths of (<b>c</b>) 890 nm and (<b>d</b>) 1100 nm. Additionally, the 3D distribution of the far-field with (<b>c</b>) Y-directional and (<b>d</b>) X-directional incident light propagation. Polar graphs are also plotted to depict the scattering far-field in YZ plane and XZ plane for the wavelengths of (<b>e</b>) 890 nm and (<b>f</b>) 1100 nm, respectively.</p> "> Figure 2
<p>(<b>a</b>) Indicated by the blue sphere is the numerical calculation domain of the far-field region in the case of upper block shifts in the +Y direction (right side of subfigure). The blue arrow indicates the incident light propagating along the Y-axis with the vertical electric field (E<sub>Z</sub>), as shown by the black arrow. (<b>b</b>) Scattering far field intensity plots in the YZ plane as a function of angle for upper block shifts. (<b>c</b>) Plots of far-field values at specific spots along the ±X, ±Y, ±Z directions. All colored dots indicate the respective axes depicted in <a href="#sensors-18-03365-f002" class="html-fig">Figure 2</a>a. (<b>d</b>) Plots of scattering intensity ratios obtained by dividing the value at each positive axis location with the corresponding value at each negative axis location in the YZ plane.</p> "> Figure 3
<p>(<b>a</b>) Representation of the numerical calculation domain of the far-field region in the case when the upper block is shifted along +X direction (right side of subfigure) by the XZ plane of the red sphere. The red arrow indicates the direction of the incident light along the X-axis with the vertical electric field (E<sub>Z</sub>) indicated by the black arrow. (<b>b</b>) Plots of far-field intensity variations of a function of angle in the XZ plane based on the shift of the upper block. (<b>c</b>) Plots of far-field values at specific spots along the ±X, ±Y, ±Z directions. (<b>d</b>) Plots of scattering intensity ratio obtained by dividing the value at each positive axis location with the corresponding value at each negative axis location in the XZ plane.</p> "> Figure 4
<p>(<b>a</b>) Schematic of the movement of the upper block in the horizontal plane, XY. The purple arrow indicates the direction of the incident light propagation with respect to the blocks at an angle of 40 °. (<b>b</b>) Scattering near-field spectra of all the structures (black line) and the air gap (red line) at an incident light angle of 40°. (<b>c</b>,<b>d</b>) Plots of the scattering field intensities following horizontal and vertical shifts of ΔX = 3.7 nm and ΔY = 9.7 nm, respectively, for mode 1 (or mode 2). (<b>e</b>) Mapping plots showing the combination of the two other modes at the specific shifts of ΔX = 3.7 nm and ΔY = 9.7 nm, as represented by the dotted line and the solid lines.</p> ">
Abstract
:1. Introduction
2. Structure, Specific Mode Profile and Calculation Methods
3. Novel Method for Measuring 1D Locations
4. Expansion to 2D Locations Using Scattering Ratio Maps
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 6950–6957. [Google Scholar] [CrossRef] [PubMed]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Conrad, R. Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity. Magnetochemistry 2018, 4, 35. [Google Scholar] [CrossRef]
- Conrad, R. Microstructure, Surface Plasmon, Magneto-Optic Surface Plasmon, and Sensitivity Properties of Magneto-Plasmonic Co/Au Multilayers. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Conrad, R.; Simone, P.; Ivan, H. Improved Magneto-Optic Surface Plasmon Resonance Biosensors. Photonics 2018, 5, 15. [Google Scholar] [CrossRef]
- Conrad, R.; Simone, P.; Ivan, H.; Eric, E.F. Microstructure and magneto-optical surface plasmon resonance of Co/Au multilayers. J. Phys. Commun. 2018, 2, 055010–055019. [Google Scholar] [CrossRef]
- Daria, O.I.; Grigory, A.K.; Pavel, O.K.; Giovanni, D.; Sergey, K.S.; Vladimir, I.B. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 2016, 6, 28077. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hanfer, J.H. Localized Surface plasmon resonance sensors. Chem. Rev. 2013, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Lee, D.E.; Kwon, S.H. Sensitive hydrogen sensors based on gold-palladium double nanoblock. IEEE. Photonics Technol. Lett. 2014, 26, 2232–2235. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Deng, Q.; Xu, H. Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nat. Commun. 2018, 9, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ringe, E.; Sharma, B.; Henry, A.I.; Marks, L.D.; Duyne, R.P.V. Single nanoparticle plamonics. PCCP 2018, 15, 4110–4131. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Lee, Y.J.; Shin, E.; Kwon, S.H. Nanometric plasmonic ruler based on orthogonal plasmonic gap modes in metal nanoblocks. Appl. Sci. 2018, 8, 386. [Google Scholar] [CrossRef]
- Kosma, K.; Schuster, K.; Kobelke, J.; Pissadakis, S. An “in-fiber” whispering-gallery-mode bi-sphere resonator, sensitive to nanometric displacements. Appl. Phys. B 2017, 124, 1–9. [Google Scholar] [CrossRef]
- Romero, I.; Aizpurua, J.; Bryant, G.W.; Abajo, F.J.G. Plasmons in nearly touching metallic nanoparticle: Singular response in the limit of touching dimers. Opt. Exp. 2006, 14, 9988–9999. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shan, N.C.; Zhao, J.; Duyne, R.P.V. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.C.; Fan, Z.; Crouch, R.A.; Sinha, S.S.; Pramanik, A. Nanoscopic optical rulers beyond the FRET distance limit: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 6370–6404. [Google Scholar] [CrossRef] [PubMed]
- Sonnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivisatos, A.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2003, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Lee, L.P. Biomolecular plasmonics for quantitative biology and nanomedicine. Curr. Opin. Biotechnol. 2010, 21, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A.P.; Giessen, H. Three-dimensional plasmonic rulers. Science 2011, 332, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.J.; Hentschel, M.; Liu, N.; Giessen, H. Analytical model of the three—Dimensional plasmonic ruler. ACS Nano 2012, 6, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Weiss, T.; Mesch, M.; Laugguth, L.; Eigenthaler, U.; Hirscher, M.; Sonnichsen, C.; Giessen, H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 2010, 10, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H. Plasmonic ruler with angstrom distance resolution based on double metal blocks. IEEE Photonics Technol. Lett. 2013, 25, 1619–1622. [Google Scholar] [CrossRef]
- Betzig, E.; Trautman, J.K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992, 257, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Knoll, B.; Keilmann, F. Near- field probing of vibrational absorption for chemical microscopy. Nature 1999, 399, 134–137. [Google Scholar] [CrossRef]
- Taubner, T.; Korobkin, D.; Urzhumov, Y.; Shvets, G.; Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 2006, 313, 1595. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevin, J.S.; Matthew, M.H.; Rubén, E.; Andrei, G.B.; Javier, A.; Jeremy, J.B. Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574–577. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, E.; Lee, Y.J.; Kim, Y.; Kwon, S.-H. Horizontal Plasmonic Ruler Based on the Scattering Far-Field Pattern. Sensors 2018, 18, 3365. https://doi.org/10.3390/s18103365
Shin E, Lee YJ, Kim Y, Kwon S-H. Horizontal Plasmonic Ruler Based on the Scattering Far-Field Pattern. Sensors. 2018; 18(10):3365. https://doi.org/10.3390/s18103365
Chicago/Turabian StyleShin, Eunso, Young Jin Lee, Youngsoo Kim, and Soon-Hong Kwon. 2018. "Horizontal Plasmonic Ruler Based on the Scattering Far-Field Pattern" Sensors 18, no. 10: 3365. https://doi.org/10.3390/s18103365