A Novel Approach to Relative Radiometric Calibration on Spatial and Temporal Variations for FORMOSAT-5 RSI Imagery
"> Figure 1
<p>Temporal variation of mean conversion factor of all bands for FORMOSAT-2 remote-sensing instrument (FS-2 RSI) caused by sensors’ degradation. B1: Band 1 (green); B2: Band 2 (blue); B3: Band 3 (cyan); B4: Band 4 (yellow); PAN (red, panchromatic band) [<a href="#B4-sensors-18-01996" class="html-bibr">4</a>].</p> "> Figure 2
<p>The naked complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip (<b>left</b>) and CMOS IC chip package (<b>right</b>) for the FS-5 RSI sensor. The CMOS IC is a single chip with dimensions of 120 mm by 23.2 mm, connecting four system-on-chips (SoC). Each SoC is composed of five image-sensing lines. The multispectral image sensing lines consists of 6000 pieces of 20-μm pixels, while the panchromatic image sensing line consists of 12,000 pieces of 10-μm pixels [<a href="#B5-sensors-18-01996" class="html-bibr">5</a>].</p> "> Figure 3
<p>(<b>a</b>) Characteristic striping in the original satellite imagery; (<b>b</b>) the same image after applying relative radiometric calibration [<a href="#B6-sensors-18-01996" class="html-bibr">6</a>].</p> "> Figure 4
<p>Field imagery from the digital mode sensor of FORMOSAT-5 provided by the National Space Organization (NSPO) for the testing of relative radiometric calibration.</p> "> Figure 5
<p>Intrinsic mode function (IMF) shifting process of Hilbert–Huang transform (HHT) [<a href="#B29-sensors-18-01996" class="html-bibr">29</a>]. The algorithm utilizes an iterative sifting process that successively subtracts the local mean from a signal. (<b>a</b>) The sifting process follows these steps: (1) determine the local extrema (maxima, minima) of the signal; (2) connect the maxima with an interpolation function, creating an upper envelope about the signal; (3) connect the minima with an interpolation function, creating a lower envelope about the signal; (4) calculate the local mean as half of the difference between the upper and lower envelopes; (5) subtract the local mean from the signal. (<b>b</b>–<b>h</b>) Iteration on the residual until the trend is obtained [<a href="#B30-sensors-18-01996" class="html-bibr">30</a>].</p> "> Figure 6
<p>Flow chart of relative radiometric calibration in the spatial variation.</p> "> Figure 7
<p>Spatial non-uniformity of grayscale values (digital numbers) from flying mode test imagery for all bands of gain setting G2. (<b>a</b>) Band 1 (blue band); (<b>b</b>) Band 2 (green band); (<b>c</b>) Band 3 (red band); (<b>d</b>) Band 4 (near infrared band); (<b>e</b>) PAN (panchromatic band).</p> "> Figure 8
<p>Temporal non-uniformity of grayscale values (digital numbers) for the 100th detector from flying mode test imagery for all bands of gain setting G2. (<b>a</b>) Band 1 (blue band); (<b>b</b>) Band 2 (green band); (<b>c</b>) Band 3 (red band); (<b>d</b>) Band 4 (near infrared band); (<b>e</b>) PAN (panchromatic band).</p> "> Figure 9
<p>Results of IMF filtering on digital mode test imagery. (<b>a</b>–<b>l</b>) indicate the resulting IMF-filtered imagery after deducting various numbers (<span class="html-italic">x</span>) of accumulative IMFs (i.e., <span class="html-italic">x</span> = 1, 2, 3, …, 12; <span class="html-italic">x</span> is an integer, representing the number of accumulative IMFs) from the original test imagery as described in Equation (3b).</p> "> Figure 10
<p>The flowchart of relative radiometric calibration both in temporal and spatial variations. The step of the relative radiometric calibration in the spatial variation is based on the grayscale values calibrated in the temporal variation.</p> "> Figure 11
<p>Statistics of the mean STD after temporal density calibration. STD/time denotes the STD calculated after the temporal density calibration. <span class="html-italic">x</span> is the number of accumulative IMFs; IMF1–<span class="html-italic">x</span> stands for the sum of <span class="html-italic">x</span> IMFs deducted from the original grayscale values. DM stands for digital mode sensor; G1B2 stands for gain setting G1 and Band 2, etc. (<b>a</b>) For digital mode (DM) test imagery before and after the correction of the sensor; the lowest mean STDs are with IMF1–9; (<b>b</b>) for flying mode test imagery before and after the correction for all bands of gain setting G1; the lowest mean STDs are with IMF1–8; (<b>c</b>) for flying mode test imagery before and after the correction for all bands of gain setting G2; the lowest mean STDs are with IMF1–8; (<b>d</b>) for flying mode test imagery before and after the correction for all bands of gain setting G4; the lowest mean STDs are with IMF1–8.</p> "> Figure 12
<p>Same as <a href="#sensors-18-01996-f011" class="html-fig">Figure 11</a>, but both temporal and spatial density calibrations are performed.</p> "> Figure 13
<p>Comparison of relative response coefficient of the sensor’s detector chips for flying mode test imagery for gain setting G2. (<b>a</b>) Results of the EMD–HHT method from this study; (<b>b</b>) results of the NSPO; (<b>c</b>) overlapping curves of (<b>a</b>) and (<b>b</b>).</p> "> Figure 14
<p>Same as <a href="#sensors-18-01996-f004" class="html-fig">Figure 4</a>, but after EMD–HHT relative radiometric calibration.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Imagery Dataset for Relative Radiometric Calibration
2.2. Radiometric Conversion
2.3. Hilbert–Huang Transform (HHT)
2.4. Relative Response Coefficients
2.5. Validation of Relative Response Coefficients
3. Results and Discussions
3.1. Relative Radiometric Calibration
3.1.1. Relative Calibration in the Spatial Variation
3.1.2. Relative Calibration in Temporal and Spatial Variations
3.2. Comparison of Relative Response Coefficients
3.3. Case Study of Pre-Flight Imagery
4. Conclusions and Future Work
- (1)
- The striping and banding noises of FORMOSAT-5 RSI imagery may be caused by inconsistencies between detector chips and electronic instability in the spatial and temporal variations.
- (2)
- The calibration of the temporal variation to stabilize essential IMFs of the spatial variation is suggested, although the temporal variation of each detector is relatively small.
- (3)
- Testing results show that the EMD–HHT method of relative radiometric calibration proposed in this study is able to eliminate the striping and banding of the test imagery dataset caused by the non-uniformity of sensors. The overall improvement rate is over 95% for all spectral bands and gain settings. The temporal relative radiometric calibration subsequently reduces the accumulative numbers of IMFs required for filtering as well as the post-calibration mean STD, indicating the significance of and need for relative radiometric calibration in the temporal variation.
- (4)
- In comparing the relative response coefficients of images from flying mode sensors (examined with a standard light source only), the mean error between results of the EMD–HHT approach and that provided by the NSPO was 0.006%. This shows that EMD–HHT for the relative radiometric calibration of FS-5 RSI sensors is highly effective and its transferability to other sensors is promising as well.
- (5)
- For digital mode sensors, relative response coefficients are derived from the images viewed with a uniform light source, and then applied to the field images in order to filter out the striping and banding noises. The results, as demonstrated in Figure 14, indicate that the EMD–HHT process is highly applicable to the on-orbit relative radiometric calibration of FS-5 RSI.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eplee, R.E.; Turpie, K.R.; Meister, G.; Patt, F.S.; Franz, B.A.; Bailey, S.W. On-orbit calibration of the suomi national polar-orbiting partnership visible infrared imaging radiometer suite for ocean color applications. Appl. Opt. 2015, 54, 1984–2006. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Chen, L.; Hu, X.; Zhang, L.; Zhang, P. Assessment and correction of on-orbit radiometric calibration for fy-3 virr thermal infrared channels. Remote Sens. 2014, 6, 2884–2897. [Google Scholar] [CrossRef]
- Eplee, R.E., Jr.; Meister, G.; Patt, F.S.; Franz, B.A.; McClain, C.R. Uncertainty assessment of the seawifs on-orbit calibration. In Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2011. [Google Scholar]
- Hsu, K.-H.; Lee, S.; Chen, N.-Y.; Wu, A.-M. Evolution of on-orbit radiometric calibration of formosat-2 remote sensing instrument. In Technical Report; National Space Organization (NSPO): Hsinchu, Taiwan, 2016. [Google Scholar]
- NSPO. National Space Organization (NSPO): Key components of formosat-5. Available online: http://www.nspo.narl.org.tw/en2016/projects/FORMOSAT-5/components.html (accessed on 24 January 2018).
- Henderson, B.G.; Krause, K.S. Relative Radiometric Correction of Quickbird Imagery Using the Side-Slither Technique on-Orbit; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A landsat surface reflectance dataset for north america, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric correction of multi-temporal landsat data for characterization of early successional forest patterns in western oregon. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm. Eng. Remote Sens. 2000, 66, 967–980. [Google Scholar]
- Dinguirard, M.; Slater, P.N. Calibration of space-multispectral imaging sensors: A review. Remote Sens. Environ. 1999, 68, 194–205. [Google Scholar] [CrossRef]
- Liu, C.-C.; Kamei, A.; Hsu, K.-H.; Tsuchida, S.; Huang, H.-M.; Kato, S.; Nakamura, R.; Wu, A.-M. Vicarious calibration of the formosat-2 remote sensing instrument. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2162–2169. [Google Scholar]
- Lin, T.-H.; Liu, G.-R. In-orbit radiometric calibration of the formosat-2 remote sensing instrument. Terr. Atmos. Ocean. Sci. 2009, 20, 833–838. [Google Scholar] [CrossRef]
- Eplee, R.E.; Meister, G.; Patt, F.S.; McClain, C.R. The on-orbit calibration of seawifs: Functional fits to the lunar time series. In Proceedings of the Earth Observing Systems XIII, San Diego, CA, USA, 20 August 2008; Volume 7081. [Google Scholar] [CrossRef]
- Aramo, C.; Brack, J.; Caruso, R.; D’Urso, D.; Fazio, D.; Fonte, R.; Gemmeke, H.; Kleifges, M.; Knapik, R.; Insolia, A. Optical relative calibration and stability monitoring for the auger fluorescence detector. arXiv, 2005; arXiv:astro-ph/0507577. [Google Scholar]
- Yuan, D.; Elvidge, C.D. Comparison of relative radiometric normalization techniques. ISPRS J. Photogramm. Remote Sens. 1996, 51, 117–126. [Google Scholar] [CrossRef]
- Pesta, F.; Bhatta, S.; Helder, D.; Mishra, N. Radiometric non-uniformity characterization and correction of landsat 8 oli using earth imagery-based techniques. Remote Sens. 2014, 7, 430–446. [Google Scholar] [CrossRef]
- Hsu, K.-H.; Lee, S.; Liu, C. Pre-flight formosat-5 relative radiometric calibration. In Technical Report; National Space Organization (NSPO): Hsinchu, Taiwan, 2016. [Google Scholar]
- Brook, A.; Dor, E.B. Supervised vicarious calibration (svc) of hyperspectral remote-sensing data. Remote Sens. Environ. 2011, 115, 1543–1555. [Google Scholar] [CrossRef]
- Riess, A. On-orbit calibration of acs cte corrections for photometry. In Instrument Science Report ACS 2003-009; The Association of Universities for Research in Astronomy, Inc.: Ann Arbor, MI, USA, 2003; Available online: http://www.stsci.edu/hst/hst/acs/documents/isrs/isr0309.pdf (accessed on 27 January 2018).
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping cmodis data by power filtering. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Yuan, Y. Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4009–4018. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, W.; Wang, M.; Yan, L. A relative radiometric correction method for airborne image using outdoor calibration and image statistics. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5164–5174. [Google Scholar] [CrossRef]
- Acito, N.; Diani, M.; Corsini, G. Subspace-based striping noise reduction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1325–1342. [Google Scholar] [CrossRef]
- Biday, S.G.; Bhosle, U. Relative radiometric correction of multitemporal satellite imagery using fourier and wavelet transform. J. Indian Soc. Remote Sens. 2012, 40, 201–213. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on hilbert-huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yeh, C.-H.; Young, H.-W.V.; Hu, K.; Lo, M.-T. On the computational complexity of the empirical mode decomposition algorithm. Phys. A Stat. Mech. Appl. 2014, 400, 159–167. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoliak, B.V.; Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 2011, 37, 759. [Google Scholar] [CrossRef]
- Chen, J.-S. Signal filtering using the hilbert-huang transform. J. Sci. Eng. Technol. 2010, 6, 75–84. [Google Scholar]
- Barnhart, B.L. The Hilbert-Huang Transform: Theory, Applications, Development; The University of Iowa: Iowa City, IA, USA, 2011. [Google Scholar]
- Hsu, K.-H.; Lee, S.; Liu, C. Pre-flight formosat-5 relative radiometric calibration. In Proceedings of the 37th Asian Conference on Remote Sensing (ACRS 2016), Colombo, Sri Lanka, 17–21 October 2016. [Google Scholar]
RSI Instrument Type | Pushbroom Imager |
---|---|
Spectral bands | 1 PAN (0.45–0.72 μm) |
4 MS (multispectral) bands: Blue (0.45–0.52 μm), Green (0.52–0.60 μm), Red (0.63–0.69 μm), NIR (0.76–0.90 μm) | |
GSD (ground sample distance) | 2 m (PAN), 4 m (MS) |
Swath width | 24 km |
Data quantization | 12 bit |
CTF (contrast transfer function) | ≥0.1 |
SNR (signal-to-noise ratio) | ≥92 (PAN), ≥100 (MS) |
Detector type | Time delay integration (TDI) complementary metal oxide semiconductor (CMOS) array, five bands, PAN = 12,000 pixels, MS = 6000 pixels |
Optics | Cassegrain telescope with an aperture of 45 cm (primary mirror) |
DM | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | IMF1–12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STD/space | 294.89 | 17.74 | 13.11 | 10.47 | 8.88 | 7.96 | 7.61 | 7.68 | 304.42 | 30422.51 | 1304.97 | 457.90 | 800.82 |
93.98% | 95.55% | 96.45% | 96.99% | 97.30% | 97.40% | 97.42% | −3.23% | −10,216.5% | −342.53% | −55.28% | −171.57% | ||
Mean | 1260.32 | 1260.57 | 1260.47 | 1260.42 | 1260.40 | 1260.40 | 1260.38 | 1260.44 | 1257.01 | 1089.18 | 1266.48 | 1270.52 | 1289.14 |
G1B2 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 37.07 | 12.62 | 9.01 | 6.38 | 4.71 | 3.62 | 3.01 | 2.93 | 3.59 | 6.14 | 4.88 | 7.39 | |
65.96% | 75.69% | 82.79% | 87.29% | 90.23% | 91.88% | 92.10% | 90.32% | 83.44% | 86.84% | 80.06% | |||
Mean | 1574.57 | 1574.68 | 1574.46 | 1574.45 | 1574.47 | 1574.5 | 1574.56 | 1574.74 | 1575.03 | 1576 | 1575.33 | 1578.18 | |
G1B3 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 29.15 | 13.12 | 9.68 | 6.91 | 5.04 | 3.84 | 2.99 | 2.98 | 3.89 | 6.53 | 11.21 | 10.2 | |
54.99% | 66.79% | 76.30% | 82.71% | 86.83% | 89.74% | 89.78% | 86.66% | 77.60% | 61.54% | 65.01% | |||
Mean | 1258.26 | 1258.4 | 1258.12 | 1258.1 | 1258.09 | 1258.1 | 1258.13 | 1258.26 | 1258.76 | 1259.41 | 1257.97 | 1256.57 | |
G1B4 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 36.93 | 10.54 | 7.81 | 5.70 | 4.24 | 3.25 | 2.90 | 3.14 | 5.55 | 5.24 | 7.02 | 10.61 | |
71.46% | 78.85% | 84.57% | 88.52% | 91.20% | 92.15% | 91.50% | 84.97% | 85.81% | 80.99% | 71.27% | |||
Mean | 1315.13 | 1315.21 | 1314.85 | 1314.81 | 1314.81 | 1314.82 | 1314.86 | 1315.04 | 1315.77 | 1315.5 | 1313.49 | 1311.59 | |
G1PAN | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | IMF1–12 |
STD/space | 57.48 | 17.16 | 12.67 | 9.55 | 7.59 | 6.47 | 6.39 | 6.55 | 6.59 | 8.08 | 31.02 | 14.35 | 16.11 |
70.15% | 77.96% | 83.39% | 86.80% | 88.74% | 88.88% | 88.60% | 88.54% | 85.94% | 46.03% | 75.03% | 71.97% | ||
Mean | 1460.22 | 1460.49 | 1460.32 | 1460.27 | 1460.25 | 1460.25 | 1460.31 | 1460.4 | 1460.42 | 1461.19 | 1467.1 | 1465.27 | 1468.24 |
G2B1 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 54.32 | 18.29 | 13.21 | 9.55 | 6.95 | 5.39 | 4.56 | 4.09 | 3.88 | 7.58 | 6.88 | 6.65 | |
66.33% | 75.68% | 82.42% | 87.21% | 90.08% | 91.61% | 92.47% | 92.86% | 86.05% | 87.33% | 87.76% | |||
Mean | 1178.02 | 1178.31 | 1177.89 | 1177.83 | 1177.81 | 1177.83 | 1177.87 | 1177.99 | 1178.19 | 1178.68 | 1178.59 | 1178.1 | |
G2B2 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 37.38 | 17.73 | 12.69 | 9.04 | 6.61 | 5.00 | 3.99 | 3.74 | 3.95 | 14.14 | 7.97 | 8.77 | |
52.57% | 66.05% | 75.82% | 82.32% | 86.62% | 89.33% | 89.99% | 89.43% | 62.17% | 78.68% | 76.54% | |||
Mean | 1500.15 | 1500.36 | 1500.05 | 1500 | 1500 | 1500.03 | 1500.08 | 1500.24 | 1500.5 | 1505.19 | 1502.66 | 1503.85 | |
G2B3 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 32.95 | 18.57 | 13.57 | 9.85 | 7.23 | 5.52 | 4.35 | 3.86 | 4.72 | 10.25 | 14.97 | 10.91 | |
43.64% | 58.82% | 70.11% | 78.06% | 83.25% | 86.80% | 88.29% | 85.68% | 68.89% | 54.57% | 66.89% | |||
Mean | 1215.81 | 1216.1 | 1215.74 | 1215.68 | 1215.67 | 1215.67 | 1215.7 | 1215.78 | 1216.29 | 1218.5 | 1217.45 | 1216.8 | |
G2B4 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 37.91 | 16.89 | 11.74 | 8.3 | 6.01 | 4.56 | 3.73 | 3.47 | 5.24 | 5.92 | 8.49 | 11.85 | |
55.45% | 69.03% | 78.11% | 84.15% | 87.97% | 90.16% | 90.85% | 86.18% | 84.38% | 77.60% | 68.74% | |||
Mean | 1255.07 | 1255.3 | 1255.05 | 1255.01 | 1254.99 | 1255.01 | 1255.06 | 1255.2 | 1255.74 | 1256.04 | 1253.84 | 1252.17 | |
G2PAN | Original | IMF1 | IMF–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | IMF1–12 |
STD/space | 66.51 | 26.39 | 19.55 | 15.03 | 12.04 | 10.24 | 9.45 | 9.24 | 9.42 | 12.2 | 39 | 19.7 | 22.41 |
60.32% | 70.61% | 77.40% | 81.90% | 84.60% | 85.79% | 86.11% | 85.84% | 81.66% | 41.36% | 70.38% | 66.31% | ||
Mean | 1354.74 | 1355.26 | 1355.01 | 1354.88 | 1354.83 | 1354.82 | 1354.88 | 1354.91 | 1354.96 | 1355.45 | 1365.62 | 1362.38 | 1366.49 |
G4B1 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 61.25 | 26.90 | 19.17 | 13.83 | 10.10 | 7.76 | 6.44 | 5.59 | 5.96 | 18.88 | 10.31 | 12.26 | |
56.08% | 68.70% | 77.42% | 83.51% | 87.33% | 89.49% | 90.87% | 90.27% | 69.18% | 83.17% | 79.98% | |||
Mean | 1394.03 | 1394.55 | 1394.02 | 1393.91 | 1393.87 | 1393.89 | 1393.93 | 1394.07 | 1394.42 | 1396.76 | 1397.39 | 1398.57 | |
G4B2 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 57.94 | 25.93 | 18.98 | 13.79 | 10.17 | 7.75 | 6.39 | 6.29 | 11.99 | 36.33 | 18.57 | 19.07 | |
55.25% | 67.24% | 76.20% | 82.45% | 86.62% | 88.97% | 89.14% | 79.31% | 37.30% | 67.95% | 67.09% | |||
Mean | 1823.91 | 1824.28 | 1824.12 | 1824.04 | 1824.02 | 1824.05 | 1824.12 | 1824.29 | 1825.8 | 1842.96 | 1837.27 | 1843.17 | |
G4B3 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 50.31 | 27.80 | 20.39 | 15.05 | 11.32 | 8.88 | 7.35 | 6.68 | 7.75 | 23.35 | 26.82 | 24.12 | |
44.74% | 59.47% | 70.09% | 77.50% | 82.35% | 85.39% | 86.72% | 84.60% | 53.59% | 46.69% | 52.06% | |||
Mean | 1440.84 | 1441.38 | 1440.86 | 1440.75 | 1440.71 | 1440.71 | 1440.74 | 1440.84 | 1441.48 | 1449.05 | 1448.06 | 1450.2 | |
G4B4 | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | |
STD/space | 51.47 | 23.48 | 17.49 | 12.89 | 9.47 | 7.11 | 5.68 | 5.19 | 7.95 | 16.69 | 15.69 | 21.76 | |
54.38% | 66.02% | 74.96% | 81.60% | 86.19% | 88.96% | 89.92% | 84.55% | 67.57% | 69.52% | 57.72% | |||
Mean | 1483.51 | 1483.89 | 1483.17 | 1483.09 | 1483.06 | 1483.07 | 1483.14 | 1483.31 | 1483.95 | 1487.98 | 1484.69 | 1491.58 | |
G4PAN | Original | IMF1 | IMF1–2 | IMF1–3 | IMF1–4 | IMF1–5 | IMF1–6 | IMF1–7 | IMF1–8 | IMF1–9 | IMF1–10 | IMF1–11 | IMF1–12 |
STD/space | 102.82 | 46.82 | 37.80 | 32.67 | 29.52 | 27.75 | 26.95 | 26.72 | 26.91 | 28.94 | 68.14 | 41.61 | 44.48 |
54.46% | 63.24% | 68.23% | 71.29% | 73.01% | 73.79% | 74.01% | 73.83% | 71.85% | 33.73% | 59.53% | 56.74% | ||
Mean | 1532 | 1533.45 | 1533.08 | 1532.85 | 1532.73 | 1532.7 | 1532.75 | 1532.83 | 1532.88 | 1533.51 | 1554.75 | 1547.73 | 1554.89 |
Gain Setting G1 STD Before/After Calibration (Efficiency %) | Gain Setting G2 STD Before/After Calibration (Efficiency %) | Gain Setting G4 STD Before/After Calibration (Efficiency %) | |
---|---|---|---|
Band 1 | NA * | 54.44/16.34 (70.00) | NA * |
Band 2 | 39.62/11.47 (71.05) | 40.12/17.25 (57.20) | 58.31/25.16 (55.87) |
Band 3 | 35.20/12.43 (64.68) | 35.20/12.43 (64.68) | 58.95/26.77 (54.61) |
Band 4 | 43.61/09.74 (77.66) | 35.20/12.43 (64.68) | 56.34/26.94 (52.47) |
PAN | 60.73/16.40 (72.99) | 46.27/17.43 (62.33) | 109.52/57.27 (47.71) |
Gain Setting G1 | Gain Setting G2 | Gain Setting G4 | |||
---|---|---|---|---|---|
Band 1 | NA | Band 1 | 0.01288% | Band 1 | −0.00048% |
Band 2 | −0.01053% | Band 2 | −0.00607% | Band 2 | −0.02075% |
Band 3 | 0.00001% | Band 3 | 0.00305% | Band 3 | −0.00481% |
Band 4 | 0.01998% | Band 4 | −0.01044% | Band 4 | 0.01320% |
PAN | −0.00152% | PAN | −0.01165% | PAN | −0.05426% |
Gain Setting G1 | Gain Setting G2 | Gain Setting G4 | |||
---|---|---|---|---|---|
Band 1 | NA | Band 1 | 0.02128% | Band 1 | 0.01138% |
Band 2 | −0.00034% | Band 2 | 0.00006% | Band 2 | −0.00369% |
Band 3 | 0.00417% | Band 3 | −0.00760% | Band 3 | −0.00113% |
Band 4 | 0.01143% | Band 4 | 0.00496% | Band 4 | 0.00298% |
PAN | −0.00056% | PAN | 0.00174% | PAN | 0.00816% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-H.; Hsiao, M.-C.; Chan, H.-P.; Tsai, F. A Novel Approach to Relative Radiometric Calibration on Spatial and Temporal Variations for FORMOSAT-5 RSI Imagery. Sensors 2018, 18, 1996. https://doi.org/10.3390/s18071996
Lin T-H, Hsiao M-C, Chan H-P, Tsai F. A Novel Approach to Relative Radiometric Calibration on Spatial and Temporal Variations for FORMOSAT-5 RSI Imagery. Sensors. 2018; 18(7):1996. https://doi.org/10.3390/s18071996
Chicago/Turabian StyleLin, Tang-Huang, Min-Chung Hsiao, Hai-Po Chan, and Fuan Tsai. 2018. "A Novel Approach to Relative Radiometric Calibration on Spatial and Temporal Variations for FORMOSAT-5 RSI Imagery" Sensors 18, no. 7: 1996. https://doi.org/10.3390/s18071996
APA StyleLin, T. -H., Hsiao, M. -C., Chan, H. -P., & Tsai, F. (2018). A Novel Approach to Relative Radiometric Calibration on Spatial and Temporal Variations for FORMOSAT-5 RSI Imagery. Sensors, 18(7), 1996. https://doi.org/10.3390/s18071996