Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain
<p>A clinical angiography prototype system and chest phantom (Multipurpose Chest Phantom N1 “LUNGMAN”, Kyoto Kagaku, Kyoto, Japan).</p> "> Figure 2
<p>Noise analysis of actual image. (<b>a</b>) observed image; (<b>b</b>) noiseless image (average of 100 noisy images); (<b>c</b>) noise image (difference between observed and noiseless images); (<b>d</b>) variance of noise images.</p> "> Figure 3
<p>Noise variance against noiseless pixel intensity estimated from noisy images. The slope of the solid line is the Poisson noise parameter, <math display="inline"> <semantics> <mrow> <mi>α</mi> </mrow> </semantics> </math>, and the <span class="html-italic">y</span>-axis intercept is the variance of the Gaussian noise, <math display="inline"> <semantics> <mrow> <mi>σ</mi> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </semantics> </math>.</p> "> Figure 4
<p>CT and NSCT decomposition schemes. (<b>a</b>) CT; (<b>b</b>) NSCT.</p> "> Figure 5
<p>Noise analysis of Poisson noise. (<b>a</b>) Poisson noise-added image; (<b>b</b>) noiseless image (high-dose X-ray image); (<b>c</b>) noise image (artificially generated); (<b>d</b>) variance of noise images.</p> "> Figure 6
<p>Noise variance against noiseless pixel intensity for Poisson simulated noisy images.</p> "> Figure 7
<p>Noise analysis of Poisson noise in the NSP domain. Variance of noise subband coefficient (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of noiseless low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at the scale level (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Noise analysis of Poisson noise in the NSCT domain. Variance of noise subband coefficients (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of noiseless low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) for the scale level <span class="html-italic">m</span> and direction level <span class="html-italic">n</span> (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>; (<b>e</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>; (<b>f</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>g</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>; (<b>h</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>8</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 9
<p>Noise analysis of Poisson–Gaussian noise. (<b>a</b>) variance of noise against noiseless pixel intensity; (<b>b</b>) variance of noise subband coefficients in NSP domain (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) for <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>c</b>,<b>d</b>,<b>f</b>) variance of noise subband coefficients in the NSCT domain (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at scale level <span class="html-italic">m</span> and direction level <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> for (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>; (<b>e</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Noise analysis of real image in the NSP and NSCT domains. (<b>a</b>) variance of noise subband coefficients (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at the scale level <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>; (<b>b</b>–<b>d</b>) variance of noise subband coefficients (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at the scale level <span class="html-italic">m</span> and direction level <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> for (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 11
<p>Noise analysis of real image in the NSP and NSCT domains after thresholding. (<b>a</b>) variance of noise subband coefficients (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at the scale level <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>; (<b>b</b>–<b>d</b>) variance of noise subband coefficients (<math display="inline"> <semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>L</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics> </math>) against pixel intensity of mean low-band image (<math display="inline"> <semantics> <msub> <mover> <mi>G</mi> <mo>¯</mo> </mover> <mi>m</mi> </msub> </semantics> </math>) at the scale level <span class="html-italic">m</span> and direction level <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> for (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>N</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 12
<p>Non-subsampled pyramid decomposition. (<b>a</b>) decomposition scheme; (<b>b</b>) bandwidth of subbands.</p> "> Figure 13
<p>The magnitude of <math display="inline"> <semantics> <mfenced separators="" open="|" close="|"> <msub> <mi mathvariant="sans-serif">Ψ</mi> <mi>m</mi> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="bold">z</mi> </mfenced> </mfenced> </semantics> </math> for (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>.</p> "> Figure 14
<p>Denoising experiments for Poisson–Gaussian-corrupted image. (<b>a</b>) image with Poisson–Gaussian noise; (<b>b</b>) original image; (<b>c</b>–<b>f</b>) denoising results; (<b>c</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + hard threshold; (<b>d</b>) proposed method + hard threshold; (<b>e</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + soft threshold; (<b>f</b>) proposed method + soft threshold.</p> "> Figure 15
<p>Partially magnification of <a href="#sensors-18-01019-f014" class="html-fig">Figure 14</a>. (<b>a</b>) image with Poisson–Gaussian noise; (<b>b</b>) original image; (<b>c</b>–<b>f</b>) denoising results; (<b>c</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + hard threshold; (<b>d</b>) proposed method + hard threshold; (<b>e</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + soft threshold; (<b>f</b>) proposed method + soft threshold.</p> "> Figure 16
<p>Denoising experiments for real noisy image. (<b>a</b>) low-dose X-ray noisy image; (<b>b</b>) noiseless image; (<b>c</b>–<b>f</b>) denoising results; (<b>c</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + hard threshold; (<b>d</b>) proposed method + hard threshold; (<b>e</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + soft threshold; (<b>f</b>) proposed method + soft threshold.</p> "> Figure 17
<p>Partially magnification of <a href="#sensors-18-01019-f016" class="html-fig">Figure 16</a>. (<b>a</b>) low-dose X-ray noisy image; (<b>b</b>) noiseless image; (<b>c</b>)–(<b>f</b>) denoising results; (<b>c</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + hard threshold; (<b>d</b>) proposed method + hard threshold; (<b>e</b>) Du’s method [<a href="#B29-sensors-18-01019" class="html-bibr">29</a>] + soft threshold; (<b>f</b>) proposed method + soft threshold.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Poisson–Gaussian Noise Model
2.2. Non-Subsampled Contourlet Transform
3. Poisson–Gaussian Noise Analysis in the NSCT Domain
3.1. Poisson Noise Analysis
3.2. Poisson–Gaussian Noise Analysis
3.3. Real Image Noise Analysis
4. Noise Parameter Estimation
5. Experimental Method and Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cesarelli, M.; Bifulco, P.; Cerciello, T.; Romano, M.; Paura, L. X-ray fluoroscopy noise modeling for filter design. Int. J. Comput. Assist. Radiol. Surg. 2013, 8, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Elbakri, I.A.; Fessler, J.A. Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans. Med. Imaging 2002, 21, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Anscombe, F.J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 1948, 35, 246–254. [Google Scholar] [CrossRef]
- Makitalo, M.; Foi, A. Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans. Image Process. 2013, 22, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Kervrann, C.; Boulanger, J. Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 2006, 15, 2866–2878. [Google Scholar] [CrossRef] [PubMed]
- Aharon, M.; Elad, M.; Bruckstein, A. rmk-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Hirakawa, K.; Parks, T.W. Image denoising using total least squares. IEEE Trans. Image Process. 2006, 15, 2730–2742. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.K.; Simoncelli, E.P. Image modeling and denoising with orientation-adapted Gaussian scale mixtures. IEEE Trans. Image Process. 2008, 17, 2089–2101. [Google Scholar] [CrossRef] [PubMed]
- Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 2003, 12, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising with block-matching and 3 D filtering. Proc. SPIE 2006, 6064, 606414. [Google Scholar]
- Le, T.; Chartrand, R.; Asaki, T.J. A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 2007, 27, 257–263. [Google Scholar] [CrossRef]
- Bindilatti, A.A.; Mascarenhas, N.D. A nonlocal poisson denoising algorithm based on stochastic distances. IEEE Signal Process. Lett. 2013, 20, 1010–1013. [Google Scholar] [CrossRef]
- Salmon, J.; Harmany, Z.; Deledalle, C.A.; Willett, R. Poisson noise reduction with non-local PCA. J. Math. Imaging Vis. 2014, 48, 279–294. [Google Scholar] [CrossRef]
- Antonini, M.; Barlaud, M.; Mathieu, P.; Daubechies, I. Image coding using wavelet transform. IEEE Trans. Image Process. 1992, 1, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.A.; Nowak, R.D. An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 2003, 12, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Luisier, F.; Blu, T.; Unser, M. Image denoising in mixed Poisson–Gaussian noise. IEEE Trans. Image Process. 2011, 20, 696–708. [Google Scholar] [CrossRef] [PubMed]
- Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005, 14, 2091–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jing, X. Image denoising in contourlet domain based on a normal inverse Gaussian prior. Digit. Signal Process. 2010, 20, 1439–1446. [Google Scholar] [CrossRef]
- Do, M.N.; Vetterli, M. The finite ridgelet transform for image representation. IEEE Trans. Image Process. 2003, 12, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Starck, J.L.; Candès, E.J.; Donoho, D.L. The curvelet transform for image denoising. IEEE Trans. Image Process. 2002, 11, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Do, M.N.; Vetterli, M. Contourlets: A directional multiresolution image representation. In Proceedings of the 2002 International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; Volume 1. [Google Scholar]
- Po, D.Y.; Do, M.N. Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 2006, 15, 1610–1620. [Google Scholar] [CrossRef]
- Da Cunha, A.L.; Zhou, J.; Do, M.N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef] [PubMed]
- Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 2008, 17, 1737–1754. [Google Scholar] [CrossRef] [PubMed]
- Do, M.N.; Vetterli, M. Framing pyramids. IEEE Trans. Signal Process. 2003, 51, 2329–2342. [Google Scholar] [CrossRef]
- Bamberger, R.H.; Smith, M.J. A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. Signal Process. 1992, 40, 882–893. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Du, L.; Wen, Y.; Ma, J. Dual tree complex wavelet transform and Bayesian estimation based denoising of Poisson-corrupted X-ray Images. In Proceedings of the 2013 IEEE Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 598–603. [Google Scholar]
m | n | ||
---|---|---|---|
Full-band | 0.085417 | 32.533870 | |
0 | NSP | 0.065490 | 25.032060 |
1 | 0.015346 | 5.813242 | |
2 | 0.003845 | 1.433520 | |
0 | 0 | 0.008101 | 3.113986 |
1 | 0.007989 | 3.066360 | |
2 | 0.008038 | 3.076296 | |
3 | 0.008290 | 3.192081 | |
4 | 0.008321 | 3.190195 | |
5 | 0.008037 | 3.071675 | |
6 | 0.008069 | 3.087203 | |
7 | 0.008573 | 3.265702 | |
1 | 0 | 0.003774 | 1.424735 |
1 | 0.003838 | 1.444526 | |
2 | 0.003820 | 1.466331 | |
3 | 0.003909 | 1.483386 | |
2 | 0 | 0.001915 | 0.709337 |
1 | 0.001930 | 0.725090 |
m | ||
---|---|---|
0 | 0.766709 | 0.769415 |
1 | 0.179659 | 0.178682 |
2 | 0.045014 | 0.044062 |
m | n | ||
---|---|---|---|
Full-band | 0.466315 | 51.910244 | |
0 | NSP | 0.357528 | 39.940532 |
1 | 0.083778 | 9.275465 | |
2 | 0.020991 | 2.287289 | |
0 | 0 | 0.037924 | 5.083407 |
1 | 0.047112 | 5.444466 | |
2 | 0.047549 | 5.320386 | |
3 | 0.038998 | 4.907889 | |
4 | 0.040472 | 4.923046 | |
5 | 0.051170 | 4.922164 | |
6 | 0.051729 | 4.797308 | |
7 | 0.041266 | 4.814809 | |
1 | 0 | 0.020238 | 2.351813 |
1 | 0.020622 | 2.310953 | |
2 | 0.021323 | 2.317017 | |
3 | 0.021655 | 2.293817 | |
2 | 0 | 0.010413 | 1.126114 |
1 | 0.010583 | 1.161471 |
MSE | PSNR | SSIM | |
---|---|---|---|
Du’s method [29] + Hard threshold | 12.86810 | 37.03574 | 0.929491 |
Proposed method + Hard threshold | 10.96603 | 37.73034 | 0.950617 |
Du’s method [29] + Soft threshold | 10.60109 | 37.87733 | 0.960309 |
Proposed method + Soft threshold | 10.32063 | 37.99378 | 0.961132 |
MSE | PSNR | SSIM | |
---|---|---|---|
Du’s method [29] + Hard threshold | 2650.051 | 38.01466 | 0.966992 |
Proposed method + Hard threshold | 2641.592 | 38.02854 | 0.967035 |
Du’s method [29] + Soft threshold | 1627.141 | 40.13295 | 0.973222 |
Proposed method + Soft threshold | 159.0478 | 40.23192 | 0.973426 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, M.S.; Kang, M.G. Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain. Sensors 2018, 18, 1019. https://doi.org/10.3390/s18041019
Lee S, Lee MS, Kang MG. Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain. Sensors. 2018; 18(4):1019. https://doi.org/10.3390/s18041019
Chicago/Turabian StyleLee, Sangyoon, Min Seok Lee, and Moon Gi Kang. 2018. "Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain" Sensors 18, no. 4: 1019. https://doi.org/10.3390/s18041019
APA StyleLee, S., Lee, M. S., & Kang, M. G. (2018). Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain. Sensors, 18(4), 1019. https://doi.org/10.3390/s18041019