How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data
<p>Architecture of the SENDI system viewed from the tier.</p> "> Figure 2
<p>Protocol stack used in the simulation implemented in ns-3.</p> "> Figure 3
<p>Example of an RPL instance.</p> "> Figure 4
<p>Flowchart representing the rounds of a sensor.</p> "> Figure 5
<p>Radio energy dissipation model [<a href="#B23-sensors-18-00907" class="html-bibr">23</a>].</p> "> Figure 6
<p>Example of a REDE node.</p> "> Figure 7
<p>River level dataset used to generate the forecast models.</p> "> Figure 8
<p>Auto-Mutual Information for the river level.</p> "> Figure 9
<p>Percentage of false neighbors for the river level, considering (<b>a</b>) <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> = 1 and (<b>b</b>) <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math> = 17.</p> "> Figure 10
<p>Performance measurements calculated by the confusion matrix [<a href="#B31-sensors-18-00907" class="html-bibr">31</a>].</p> "> Figure 11
<p>Evaluation of the results obtained by SENDI.</p> ">
Abstract
:1. Introduction
2. Related Works
3. SENDI: System for Detecting and Forecasting Natural Disasters Based on IoT
3.1. System Architecture
3.2. Protocol Stack and Routing
3.3. Fault Tolerance Scheme
Algorithm 1 Leader Election Algorithm. |
|
3.4. Flash Flood Forecasting with the Use of ML
4. Experiments and Results
4.1. Fault Tolerance and Clustering
4.2. Evaluation of the Flash Flood Forecasting Method
5. Conclusions and Future Works
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Freitas, C.M.D.; Ximenes, E.F. Floods and Public Health—A review of the recent scientific literature on the causes, consequences and responses to prevention and mitigation. Cienc. Saude Coletiva 2012, 17, 1601–1616. [Google Scholar] [CrossRef]
- Wallemacq, P.; Herden, C.; House, R. The Human Cost of Natural Disasters 2015: A Global Perspective; Technical Report; Centre for Research on the Epidemiology of Disasters: Brussels, Belgium, 2015. [Google Scholar]
- Pozza, S.A. Identificação das Fontes de Poluição Atmosférica na Cidade de São Carlos—SP. Master’s Thesis, Federal University of São Carlos, São Carlos, Brazil, 2005. [Google Scholar]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Mainetti, L.; Patrono, L.; Vilei, A. Evolution of wireless sensor networks towards the Internet of Things: A survey. In Proceedings of the 2011 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 15–17 September 2011; pp. 1–6. [Google Scholar]
- Zelenkauskaite, A.; Bessis, N.; Sotiriadis, S.; Asimakopoulou, E. Disaster Management and Profile Modelling of IoT Objects: Conceptual Parameters for Interlinked Objects in Relation to Social Network Analysis. In Proceedings of the 2012 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS), Bucharest, Romania, 19–21 September 2012; pp. 509–514. [Google Scholar]
- Rehmani, M.H.; Viana, A.C.; Khalife, H.; Fdida, S. A cognitive radio based Internet access framework for disaster response network deployment. In Proceedings of the 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Roma, Italy, 7–10 November 2010; pp. 1–5. [Google Scholar]
- Hughes, D.; Ueyama, J.; Mendiondo, E.; Matthys, N.; Horr, W.; Michiels, S.; Huygens, C.; Joosen, W.; Man, K.; Guan, S.U. A middleware platform to support river monitoring using wireless sensor networks. J. Braz. Comput. Soc. 2011, 17, 85–102. [Google Scholar] [CrossRef]
- Dubey, R.; Luo, Z.; Xu, M.; Wamba, S.F. Developing an Integration Framework for Crowdsourcing and Internet of Things with Applications for Disaster Response. In Proceedings of the 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, Australia, 11–13 December 2015; pp. 520–524. [Google Scholar]
- Deak, G.; Curran, K.; Condell, J.; Asimakopoulou, E.; Bessis, N. IoTs (Internet of Things) and DfPL (Device-free Passive Localisation) in a disaster management scenario. Simul. Modell. Pract. Theory 2013, 35, 86–96. [Google Scholar] [CrossRef]
- Arjun, D.S.; Bala, A.; Dwarakanath, V.; Sampada, K.S.; Prahlada, R.B.B.; Pasupuleti, H. Integrating cloud-WSN to analyze weather data and notify SaaS user alerts during weather disasters. In Proceedings of the 2015 IEEE International Advance Computing Conference (IACC), Banglore, India, 12–13 June 2015; pp. 899–904. [Google Scholar]
- Persico, V.; Botta, A.; Marchetta, P.; Montieri, A.; Pescapé, A. On the performance of the wide-area networks interconnecting public-cloud datacenters around the globe. Comput. Netw. 2017, 112, 67–83. [Google Scholar] [CrossRef]
- Mitra, P.; Ray, R.; Chatterjee, R.; Basu, R.; Saha, P.; Raha, S.; Barman, R.; Patra, S.; Biswas, S.S.; Saha, S. Flood forecasting using Internet of things and artificial neural networks. In Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15 October 2016; pp. 1–5. [Google Scholar]
- Mostafaei, H.; Meybodi, M.R. Maximizing Lifetime of Target Coverage in Wireless Sensor Networks Using Learning Automata. Wirel. Pers. Commun. 2013, 71, 1461–1477. [Google Scholar] [CrossRef]
- Mostafaei, H.; Montieri, A.; Persico, V.; Pescapé, A. A sleep scheduling approach based on learning automata for WSN partialcoverage. J. Netw. Comput. Appl. 2017, 80, 67–78. [Google Scholar] [CrossRef]
- Kim, H.S.; Ko, J.; Culler, D.E.; Paek, J. Challenging the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL): A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2502–2525. [Google Scholar] [CrossRef]
- Brandt, A.; Vasseur, J.; Hui, J.; Pister, K.; Thubert, P.; Levis, P.; Struik, R.; Kelsey, R.; Clausen, T.H.; Winter, T. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. Available online: https://tools.ietf.org/html/rfc6550(accessed on 17 March 2018).
- Khan, A.A.; Rehmani, M.H.; Reisslein, M. Requirements, Design Challenges, and Review of Routing and MAC Protocols for CR-Based Smart Grid Systems. IEEE Commun. Mag. 2017, 55, 206–215. [Google Scholar] [CrossRef]
- Furquim, G.; Pessin, G.; Gomes, P.H.; Mendiondo, E.M.; Ueyama, J. A Distributed Approach to Flood Prediction Using a WSN and ML: A Comparative Study of ML Techniques in a WSN Deployed in Brazil. In Proceedings of the IDEAL 2015: 16th International Conference on Intelligent Data Engineering and Automated Learning, Wroclaw, Poland, 14–16 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 485–492. [Google Scholar]
- Kaur, M.; Sharma, A.K. LEF-P: Leader election using fuzzy for power efficient gathering in wireless sensor networks. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 91–96. [Google Scholar]
- Dong, Q.; Liu, D. Resilient Cluster Leader Election for Wireless Sensor Networks. In Proceedings of the 2009 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Rome, Italy, 22–16 June 2009; pp. 1–9. [Google Scholar]
- Pal, R.; Sindhu, R.; Sharma, A.K. SEP-E (RCH): Enhanced Stable Election Protocol Based on Redundant Cluster Head Selection for HWSNs. In Proceedings of the QShine 2013 9th International Conference on Quality, Reliability, Security and Robustness in Heterogeneous Networks, Greader Noida, India, 11–12 January 2013; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; pp. 104–114. [Google Scholar]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wire. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor. Newsl. 2009, 10–18. [Google Scholar] [CrossRef]
- Furquim, G.; Pessin, G.; Faiçal, B.S.; Mendiondo, E.M.; Ueyama, J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 2016, 1129–1141. [Google Scholar] [CrossRef]
- Riley, G.F.; Henderson, T.R. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Rand, D., Young, L.S., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent Coordinates for Strange Attractors from Mutual Information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [PubMed]
- Liebert, W.; Pawelzik, K.; Schuster, H.G. Optimal Embeddings of Chaotic Attractors from Topological Considerations. Europhys. Lett. 1991, 14. [Google Scholar] [CrossRef]
- Filho, G.P.R.; Ueyama, J.; Villas, L.A.; Pinto, A.R.; Gonçalves, V.P.; Pessin, G.; Pazzi, R.W.; Braun, T. NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques. Sensors 2014, 14, 848–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
Synthesis | |
---|---|
Dubey et al. [9] | Use IoT and Crowdsourcing to disaster response, also presenting a case study |
Asta Zelenkauskaite et al. [6] | Present a IoT environment assisted by social network to help disaster management |
Deak et al. [10] | Propose the use of IoT DfPL to enable users to be located and disaster management |
Arjun et al. [11] | Combine WSN and Cloud computing to forecast natural disasters |
Mitra et al. [13] | Present an WSN, IoT and ML approach for flood forecast |
Mostafaei et al. [14,15] | Propose, present and discuss the results of alternative approaches to address the energy |
limitation problem | |
Persico et al. [12] | Present a survey and an approach focusing on the evaluation of Cloud datacenters performance |
nJ/bit | |
E | 15,000 J |
241,920 J | |
d | 87.7 m |
n | 100 |
Voltage and Amperage (idle) | 0.5 A / 5.0 V |
Leader energy consumption | 50 J |
Round 18 | Round 19 | Round 20 | |
---|---|---|---|
0.0 | 100 | 5 | 0 |
0.1 | 100 | 7 | 0 |
0.2 | 100 | 4 | 0 |
0.3 | 100 | 6 | 0 |
0.4 | 100 | 8 | 0 |
0.5 | 100 | 12 | 0 |
0.6 | 100 | 6 | 0 |
0.7 | 100 | 6 | 0 |
0.8 | 100 | 10 | 0 |
0.9 | 100 | 10 | 0 |
1 | 100 | 7 | 0 |
0.5 (500 modes) | 500 | 464 | 36 |
MAE | RMSE | ||
---|---|---|---|
and | 12.9704 | 22.9193 | 0.6813 |
and | 31.9467 | 48.6781 | 0.0024 |
Model | Description | R | |
---|---|---|---|
A | Only rain as input (RN) | 0.5745 | 0.3301 |
B | Only moisture as input (HM) | 0.2521 | 0.0636 |
C | Only water flow as input (WF) | 0.8512 | 0.7245 |
D | RN + HM | 0.9713 | 0.9434 |
E | HM + WF | 0.8914 | 0.7946 |
F | RN + WF | 0.9891 | 0.9783 |
G | RN + HM + WF | 0.9912 | 0.9825 |
Predicted Class | |||
---|---|---|---|
Positive | Negative | ||
True Class | Positive | 28 | 4 |
Negative | 6 | 14 |
Predicted Class | |||
---|---|---|---|
Positive | Negative | ||
True Class | Positive | 20 | 14 |
Negative | 2 | 11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furquim, G.; Filho, G.P.R.; Jalali, R.; Pessin, G.; Pazzi, R.W.; Ueyama, J. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data. Sensors 2018, 18, 907. https://doi.org/10.3390/s18030907
Furquim G, Filho GPR, Jalali R, Pessin G, Pazzi RW, Ueyama J. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data. Sensors. 2018; 18(3):907. https://doi.org/10.3390/s18030907
Chicago/Turabian StyleFurquim, Gustavo, Geraldo P. R. Filho, Roozbeh Jalali, Gustavo Pessin, Richard W. Pazzi, and Jó Ueyama. 2018. "How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data" Sensors 18, no. 3: 907. https://doi.org/10.3390/s18030907
APA StyleFurquim, G., Filho, G. P. R., Jalali, R., Pessin, G., Pazzi, R. W., & Ueyama, J. (2018). How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data. Sensors, 18(3), 907. https://doi.org/10.3390/s18030907