Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint
<p>2D hyperbolic localization (each color represents a couple of hyperbolas); (<b>a</b>) difference between ideal condition and reality; (<b>b</b>) multiple hyperbolas for the optimal position.</p> "> Figure 2
<p>Localization diagram of FoPC algorithm using the space-range frame, as in [<a href="#B18-sensors-18-00778" class="html-bibr">18</a>].</p> "> Figure 3
<p>A different localization description with the space-range frame.</p> "> Figure 4
<p>Normal vector longitudinal section.</p> "> Figure 5
<p>Cone tangent plane constraint localization. (<b>a</b>) The cone tangent plane and vertical plane, (<b>b</b>) the correction with WLS.</p> "> Figure 6
<p>The weight distance diagram of the constraints.</p> "> Figure 7
<p>The position change after twice Cone constraint correction.</p> "> Figure 8
<p>Setup of the source and BSs.</p> "> Figure 9
<p>The divergence times distribution of Taylor and <span class="html-italic">Jεa</span>-based-FoPC. (<b>a</b>) <span class="html-italic">σ =</span> 0.03 m, (<b>b</b>) <span class="html-italic">σ =</span> 0.1 m.</p> "> Figure 10
<p>The biases to the true value and the increment to the initial value after each correction in the convergence process. (<b>a</b>) <span class="html-italic">R</span><sub>10</sub> = −0.043 m, <span class="html-italic">R</span><sub>20</sub> = −2.490 m, <span class="html-italic">R</span><sub>30</sub> = −2.433 m, <b><span class="html-italic">p</span></b> = (−2, 0)<span class="html-italic"><sup>T</sup></span>, <span class="html-italic">σ</span> = 0.03 m, (<b>b</b>) <span class="html-italic">R</span><sub>10</sub> = 1.263 m, <span class="html-italic">R</span><sub>20</sub> = −0.226 m, <span class="html-italic">R</span><sub>30</sub> = −1.712 m, <b><span class="html-italic">p</span></b> = (−1, 1)<span class="html-italic"><sup>T</sup></span>, <span class="html-italic">σ</span> = 0.1 m.</p> "> Figure 11
<p>RMSE distribution, <span class="html-italic">σ</span> = 0.1 m. (<b>a</b>) CRLB, (<b>b</b>) Taylor, (<b>c</b>) <span class="html-italic">Jεa</span>-based-FoPC, (<b>d</b>) <span class="html-italic">Jεe</span>-based-FoPC, (<b>e</b>) the proposed algorithm.</p> "> Figure 12
<p>Profile analysis, <span class="html-italic">σ</span> = 0.03 m, the number of simulations is 2000. (<b>a</b>) Top view, (<b>b</b>) <span class="html-italic">y</span> = 0, (<b>c</b>) <span class="html-italic">y</span> = −0.8, (<b>d</b>) <span class="html-italic">y</span> = −1.8.</p> "> Figure 13
<p>RMSE and the divergence times along the error changing, <b><span class="html-italic">p</span></b> = (1.2, 0.8)<span class="html-italic"><sup>T</sup></span>.</p> ">
Abstract
:1. Introduction
2. Algorithm and Process
2.1. Problem Description
2.2. Space-Range Frame
2.3. Cone Tangent Plane Constraint
2.4. The Weight of the Constraints
2.5. Iteration and Final Result
3. Performance Analysis
3.1. Setup and Evaluation Metrics
3.2. The Robustness
3.3. The Impact of the Source Position on Localization Accuracy
3.4. The Impact of Measurement Noise on Localization Accuracy
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhou, L.J.; Zhu, W.Q.; Luo, J.Q. Direct positioning maximum likelihood estimator using TDOA and FDOA for coherent short-pulse radar. IET Radar Sonar Navig. 2017, 11, 1505–1511. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.P.; Li, Y. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL. Sensors 2016, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Yayan, U.; Yucel, H.; Yazici, A. A Low Cost Ultrasonic Based Positioning System for the Indoor Navigation of Mobile Robots. J. Intell. Robot. Syst. 2015, 78, 541–552. [Google Scholar] [CrossRef]
- Bahroun, R.; Michel, O.; Frassati, F.; Carmona, M.; Lacoume, J.L. New algorithm for footstep localization using seismic sensors in an indoor environment. J. Sound Vib. 2014, 333, 1046–1066. [Google Scholar] [CrossRef]
- Filonenko, V.; Cullen, C.; Carswell, J.D. Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration. ISPRS Int. J. Geo-Inf. 2013, 2, 598–620. [Google Scholar] [CrossRef]
- Visalakshi1, R.; Dhanalakshmi1, P.; Palanivel1, S. Performance of speaker localization using microphone array. Int. J. Speech Technol. 2016, 19, 467–483. [Google Scholar] [CrossRef]
- Liang, Q.L.; Zhang, B.J.; Zhao, C.L. TDoA for Passive Localization: Underwater versus Terrestrial Environment. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 2100–2108. [Google Scholar] [CrossRef]
- Eswara, C.D.; Sasibhushana, R.G. Unknown radio source localization based on a modified closed form solution using TDOA measurement technique. In Proceedings of the the 4th ICRTCSE, Chennai, India, 29–30 April 2016. [Google Scholar]
- Mauro, B.; Guido, D.A.; Paolo, V. TDOA positioning in NLOS scenarios by particle filtering. Wirel. Netw. 2012, 18, 579–589. [Google Scholar]
- Li, X.; Deng, Z.D.; Rauchenstein, L.T.; Carlson, T.J. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements. Rev. Sci. Instrum. 2016, 87, 921–960. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.; Yau, H.; Hang, C.; Ching, P. Exact and Approximate Maximum Likelihood Localization Algorithms. IEEE Trans. Veh. Technol. 2006, 55, 10–16. [Google Scholar] [CrossRef]
- Wang, Z.J.; Yu, H.Y.; Hu, Y.P. Improved Chan algorithm based on maximum likelihood criterion. Comput. Appl. Softw. 2014, 31, 240–243. [Google Scholar]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Ho, K.C. Bias reduction for an explicit solution of source localisation using TDOA. IEEE Trans. Signal Process. 2012, 60, 2101–2114. [Google Scholar] [CrossRef]
- Fang, Z.; Ni, Y.D.; Liu, Y. New method of hybrid location based on least square and Taylor series expansion. Comput. Eng. 2015, 41, 316–321. [Google Scholar]
- Xu, B.; Qi, W.D.; Wei, L.; Liu, P. Turbo-TSWLS: Enhanced two-step weighted least squares estimator for TDOA-based localization. Electron. Lett. 2012, 48, 1597–1598. [Google Scholar] [CrossRef]
- Bestagini, P.; Compagnoni, M.; Antonacci, F.; Sarti, A.; Tubaro, S. TDOA-based acoustic source localization in the space–range reference frame. Multidimens. Syst. Signal Process. 2014, 25, 337–359. [Google Scholar] [CrossRef]
- Compagnoni, M.; Bestagini, P.; Antonacci, F.; Sarti, A.; Tubaro, S. Localization of Acoustic Sources through the Fitting of Propagation Cones Using Multiple Independent Arrays. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 1964–1975. [Google Scholar] [CrossRef]
- Compagnoni, M.; Notari, R.; Antonacci, F.; Sarti, A. A comprehensive analysis of the geometry of TDOA maps in localization problems. Inverse Probl. 2014, 30, 035004. [Google Scholar] [CrossRef]
- Shi, H.L.; Zhang, H.; Wang, X.Q. A TDOA Technique with Super-Resolution Based on the Volume Cross-Correlation Function. IEEE Trans. Signal Process. 2016, 64, 5682–5695. [Google Scholar] [CrossRef]
- Vankayalapati, N.; Kay, S.; Ding, Q. TDOA Based Direct Positioning Maximum Likelihood Estimator and the Cramer-Rao Bound. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1616–1635. [Google Scholar] [CrossRef]
σ | TDOA Measurements | p | Taylor 1 | Jεa 1 | Jεe 1 | Proposed 1 | ||
0.03 | −0.043 | −2.49 | −2.433 | (−2, 0) | divergent | −1.964 | −1.964 | |
−0.038 | −0.032 | |||||||
−0.576 | −0.876 | −0.307 | (−0.2, −0.4) | −59.604 | −34639 | −0.216 | −0.211 | |
−102.87 | −55.464 | −0.408 | −0.405 | |||||
2.498 | 2.559 | 0.048 | (0, 2) | divergent | 0.046 | 0.031 | ||
2.037 | 2.037 | |||||||
0.312 | 1.155 | 0.857 | (0.6, 0.2) | −2.701 | 70.879 | 0.609 | 0.606 | |
−2.343 | 53.347 | 0.218 | 0.21 | |||||
0.012 | 2.46 | 2.449 | (2, 0) | divergent | 1.974 | 1.974 | ||
0.009 | 0.007 | |||||||
σ | TDOA Measurements | p | Taylor 1 | Jεa 1 | Jεe 1 | Proposed 1 | ||
0.1 | 1.263 | −0.226 | −1.712 | (−1, 1) | −25.682 | −25.682 | −1.201 | −1.111 |
21.969 | 21.969 | 1.025 | 0.925 | |||||
−0.63 | −0.26 | 0.382 | (0.2, −0.4) | divergent | 0.267 | 0.261 | ||
−0.451 | −0.449 | |||||||
−1.745 | −0.115 | −1.296 | (1, −1) | 15.973 | 15.931 | 1.092 | 0.998 | |
−17.308 | 17.295 | −1.183 | −1.093 | |||||
−1.194 | −2.127 | −0.972 | (−0.8, −0.8) | divergent | −0.704 | −0.639 | ||
−0.867 | −0.812 | |||||||
1.762 | 3.035 | 1.671 | (1, 1.2) | 13.457 | 7.969 | 1.224 | 1.007 | |
14.409 | 9.726 | 1.304 | 1.082 |
Algorithm | σ = 0.03 | σ = 0.1 | ||
---|---|---|---|---|
b | Rrmse | b | Rrmse | |
Taylor | 0.0025 | 0.0340 | 0.0103 | 0.1151 |
Jεa | 0.0028 | 0.0355 | 0.0119 | 0.1191 |
Jεe | 0.0031 | 0.0467 | 0.0120 | 0.1536 |
Proposed | 0.0025 | 0.0359 | 0.0090 | 0.1189 |
σ (m) | 0.002 | 0.01 | 0.02 | 0.04 | 0.07 | 0.11 | 0.16 | 0.22 | 0.3 | 0.4 |
---|---|---|---|---|---|---|---|---|---|---|
RMSE (m) | 0.002 | 0.010 | 0.020 | 0.040 | 0.070 | 0.109 | 0.160 | 0.221 | 0.299 | 0.392 |
Taylor | 0 | 0 | 0 | 0 | 2 | 0 | 4 | 3 | 3 | 8 |
Jεa | 0 | 0 | 0 | 0 | 2 | 1 | 4 | 3 | 4 | 9 |
Jεe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
proposed | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Xu, X.; Zhang, T. Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint. Sensors 2018, 18, 778. https://doi.org/10.3390/s18030778
Jin B, Xu X, Zhang T. Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint. Sensors. 2018; 18(3):778. https://doi.org/10.3390/s18030778
Chicago/Turabian StyleJin, Bonan, Xiaosu Xu, and Tao Zhang. 2018. "Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint" Sensors 18, no. 3: 778. https://doi.org/10.3390/s18030778
APA StyleJin, B., Xu, X., & Zhang, T. (2018). Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint. Sensors, 18(3), 778. https://doi.org/10.3390/s18030778