Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time
<p>The signal processing framework of GNSS receivers. The modules marked as red are the improved strategies of this paper, including the resampling strategy, variable circular correlation time and acquisition with pilot channel.</p> "> Figure 2
<p>Acceptable sampling frequency (cyan areas) based on the bandpass sampling theory. Blue and green lines are lower and upper boundaries of the acceptable sampling frequency. The red line indicates the resampling frequency of the proposed strategy.</p> "> Figure 3
<p>Signal flow chart by applying the resampling strategy and the convolutional method to the received broadband satellite signal. The green, dark brown, and orange represent frequency spectra of GPS L2C, P(Y), and M code signals, respectively.</p> "> Figure 4
<p>Circular correlation results of the baseband signal <math display="inline"> <semantics> <mrow> <msub> <mi>S</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and the local zero-padding code <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>: (<b>a</b>) code offset between <math display="inline"> <semantics> <mrow> <msub> <mi>S</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is 0 (aligned); (<b>b</b>) code offset between <math display="inline"> <semantics> <mrow> <msub> <mi>S</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is less than <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> samples; (<b>c</b>) code offset between <math display="inline"> <semantics> <mrow> <msub> <mi>S</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is more than <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>−</mo> <msub> <mi>L</mi> <mi>x</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> samples.</p> "> Figure 5
<p>The received broadband signal of Dataset 1 in the frequency and time domains, and the amplitude distribution. The bandwidth of the main lobe signal is <math display="inline"> <semantics> <mrow> <mn>2.046</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math> and the intermediate frequency is <math display="inline"> <semantics> <mrow> <mn>7.4</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math>.</p> "> Figure 6
<p>The main lobe signal filtered from the received broadband signal of Dataset 1 in the frequency domain. The bandwidth of the main lobe signal is <math display="inline"> <semantics> <mrow> <mn>2.046</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math>, the intermediate frequency is <math display="inline"> <semantics> <mrow> <mn>7.4</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math> and the sampling frequency is <math display="inline"> <semantics> <mrow> <mn>53</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math>.</p> "> Figure 7
<p>The resampled signal by applying the resampling strategy to the main lobe signal of Dataset 1 in the frequency domain. The bandwidth of the resampled signal is <math display="inline"> <semantics> <mrow> <mn>2.046</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math>, the intermediate frequency is <math display="inline"> <semantics> <mrow> <mn>1.43</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math> and the sampling frequency is <math display="inline"> <semantics> <mrow> <mn>5.97</mn> <mo> </mo> <mi>MHz</mi> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Acquisition results for GPS L2C satellites without/with the resampling strategy.</p> "> Figure 9
<p>Correlation ratios of Satellite <math display="inline"> <semantics> <mrow> <mi>PRN</mi> <mn>12</mn> </mrow> </semantics> </math> acquired using the resampling strategy.</p> "> Figure 10
<p>Sensitivity of the resampling strategy for weak signals. The red plot is the detection probability of signal acquisition with the resampling strategy, and the blue one is that of the conventional acquisition algorithm (without the resampling strategy).</p> "> Figure 11
<p>Computation of signal acquisition without/with the resampling strategy for all experimental datasets: (<b>a</b>) Multiplication computation in linear axis; (<b>b</b>) Multiplication computation in log axis; (<b>c</b>) Summation computation in linear axis; (<b>d</b>) Summation computation in log axis.</p> "> Figure 12
<p>Number of satellites acquired without/with the resampling strategy for variable circular correlation time. The green circles indicate the difference of acquisition results without/with the resampling strategy; the cyan circles indicate the incomplete acquisition results with too short circular correlation time.</p> "> Figure 13
<p>Time cost of signal acquisition with/without the resampling strategy for variable circular correlation time. Red bars and plot represent acquisition results with the resampling strategy, while blue ones are for that of the conventional acquisition algorithm.</p> ">
Abstract
:1. Introduction
2. Characteristics of Satellite Signals and Framework of GNSS Receivers
2.1. Characteristics of Satellite Signals
2.2. Framework of GNSS Receivers
3. Methodology of the Resampling Strategy and Variable Circular Correlation Time
3.1. Principle of the Resampling Strategy
3.2. Realization of the Resampling Strategy for Signal Aquisition
Algorithm 1 Realization of the Resampling Strategy for GNSS Signal Acquisition |
Input:
|
|
Return: the acquired Doppler frequency and code phase offset of the received satellite signal. |
3.3. Coarse Acquisition with Variable Circular Correlation Time
3.4. Fine Acquisition with Pilot Channel
3.5. Performance Evaluation of Signal Acquisition
4. Experiments and Discussion
4.1. Experimental Platform and Datasets Description
4.2. Performance Analysis of the Resampling Strategy
4.3. Performance of Variable Circular Correlation Time
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sükeová, L.; Santos, M.C.; Langley, R.B.; Leandro, R.F.; Nievinski, F. GPS L2C signal quality analysis. In Proceedings of the 63rd Annual Meeting of the Institute of Navigation, Cambridge, MA, USA, 23–25 April 2007. [Google Scholar]
- Li, H.; Lu, M. Design and assessment of composite civil moderate code structure for efficient global positioning system L2 civil signal acquisition. IET Radar Sonar Navig. 2015, 9, 907–916. [Google Scholar] [CrossRef]
- Xie, G. Principles of GPS and Receiver Design, 1st ed.; Electronic Industry Press: Beijing, China, 2009. [Google Scholar]
- Bao, J.; Tsui, Y. Fundamentals of Global Positioning System Receivers: A Software Approach; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Sagiraju, P.K.; Raju, G.V.S.; Akopian, D. Fast acquisition implementation for high sensitivity global positioning systems receivers based on joint and reduced space search. IET Radar Sonar Navig. 2008, 2, 376–387. [Google Scholar] [CrossRef]
- Tang, P.; Wang, S.; Li, X.; Jiang, Z. A low-complexity algorithm for fast acquisition of weak DSSS signal in high dynamic environment. GPS Solut. 2017, 21, 1427–1441. [Google Scholar] [CrossRef]
- Principe, F.; Bacci, G.; Giannetti, F.; Luise, M. Software-Defined Radio Technologies for GNSS Receivers: A Tutorial Approach to a Simple Design and Implementation. Int. J. Navig. Obs. 2011, 2011, 979815. [Google Scholar] [CrossRef]
- Hassanieh, H.; Adib, F.; Katabi, D.; Indyk, P. Faster GPS via the sparse Fourier transform. In Proceedings of the International Conference on Mobile Computing & Networking, Istanbul, Turkey, 22–26 August 2012. [Google Scholar]
- Akopian, D. Fast FFT based GPS satellite acquisition methods. IEE Proc. Radar Sonar Navig. 2005, 152, 277–286. [Google Scholar] [CrossRef]
- Patel, V. Reduced-size FFT correlation techniques for GPS signal acquisition. Int. J. Comput. Appl. 2011, 2, 14–19. [Google Scholar]
- Zeng, Q.; Tang, L.; Zhang, P.; Pei, L. Fast acquisition of L2C CL codes based on combination of hyper codes and averaging correlation. J. Syst. Eng. Electron. 2016, 27, 308–318. [Google Scholar] [CrossRef]
- Ahamed, S.F.; Laveti, G.; Goswami, R.; Rao, G.S. Fast acquisition of GPS signal using Radix-2 and Radix-4 FFT algorithms. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing, Bhimavaram, India, 27–28 February 2016. [Google Scholar]
- Han, X.; Zheng, G.; Peng, S. High dynamic GPS signal analysis and acquisition algorithm. Commun. Syst. Inf. Technol. 2011, 100, 773–779. [Google Scholar]
- Silva, F.C.; Souza, S.X.D.; Silveira, L.F.Q.; Mota, F.C.; Albuquerque, G.L.A.; Valderrama, C. Two-step low complexity GPS signal acquisition. In Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, HI, USA, 20–23 April 2015. [Google Scholar]
- Albuquerque, G.L.A.; Valderrama, C.; Silva, F.C.; Xavier-de-Souza, S. Time-effective GPS time domain signal acquisition algorithm. In Proceedings of the 2016 IEEE International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2016. [Google Scholar]
- Soltanian, B.; Demirtas, A.M.; Ghadam, A.S.H.; Renfors, M. Reduced-complexity FFT-based method for Doppler estimation in GNSS receivers. EURASIP J. Adv. Signal Process. 2014, 1, 143. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, R.; Li, Y.; Zhang, N. A new algorithm for fine acquisition of GPS carrier frequency. GPS Solut. 2014, 18, 581–592. [Google Scholar] [CrossRef]
- Liu, X.; He, Z.; Haowei, W.U.; Jinglan, O.U. Rapid DSSS signal acquisition algorithm under high dynamic environment. J. Electr. Inf. Technol. 2016. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C. Joint data-pilot acquisition of GPS L1 civil signal. In Proceedings of the 2014 IEEE 12th International Conference on Signal Processing, Hangzhou, China, 19–23 October 2014. [Google Scholar]
- Wei, K.; Wen, Z.; Zhang, Y.; Bo, B. New compress sampling algorithm for FFT-based GPS signal acquisition. In Proceedings of the 2007 International Conference on Convergence Information Technology, Gyeongju, Korea, 21–23 November 2007. [Google Scholar]
- Qaisar, S.U.; Benson, C.; Ryan, M.J. A novel efficient signal processing approach for combined acquisition of GPS L1 and L2 civilian signals. In Proceedings of the 2016 Military Communications and Information Systems Conference, Canberra, Australia, 8–10 November 2016. [Google Scholar]
- Li, X.; Rueetschi, A.; Eldar, Y.C.; Scaglione, A. GPS signal acquisition via compressive multichannel sampling. Phys. Commun. 2012, 5, 173–184. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Scott, N.L.; White, D.R. The theory of bandpass sampling. IEEE Trans. Signal Process. 1991, 39, 1973–1984. [Google Scholar] [CrossRef]
- Ville, S.; Valkama, M. Jitter Mitigation in High-Frequency Bandpass-Sampling OFDM Radios. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Budapest, Hungary, 5–8 April 2009; pp. 1–6. [Google Scholar]
- Yang, Y.; Lim, C.; Nirmalathas, A. Multichannel Digitized RF-Over-Fiber Transmission Based on Bandpass Sampling and FPGA. IEEE Trans. Microw. Theory Tech. 2010, 58, 3181–3188. [Google Scholar] [CrossRef]
- Zou, N.; Xu, Z.; Ran, J.; Li, C. Performance of Reconstruction Algorithm Based on Sub-Nyquist Bandpass Sampling in the Pulse Position Modulation-Ultra Wide Band System. J. Radars 2015, 4, 827–831. [Google Scholar]
- Akos, D.M.; Stockmaster, M.; Tsui, J.B.Y.; Caschera, J. Direct bandpass sampling of multiple distinc RF signals. IEEE Trans. Commun. 1999, 47, 983–988. [Google Scholar] [CrossRef]
- Tseng, C.H.; Chou, S.C. Direct downconversion of multiband RF signals using bandpass sampling. IEEE Trans. Wirel. Commun. 2006, 5, 72–76. [Google Scholar] [CrossRef]
- Liu, J.C. Complex bandpass sampling and direct downconversion of multiband analytic signals. Signal Process. 2010, 90, 504–512. [Google Scholar] [CrossRef]
- Thabet, J.; Barrak, R.; Ghazel, A. Enhancement of bandpass sampling efficiency in direct RF subsampling receivers: Application to multiband GPS subsampling receiver. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 1412–1417. [Google Scholar]
- Qaisar, S.U.; Dempster, A.G. Assessment of the GPS L2C code structure for efficient signal acquisition. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1889–1902. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, X. A novel method to extend coherent integration for weak GPS signal acquisition. IEEE Commun. Lett. 2015, 19, 1343–1346. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, X. Weak global navigation satellite system signal acquisition with bit transition. IET Radar Sonar Navig. 2014, 9, 38–47. [Google Scholar] [CrossRef]
- Jin, T.; Yang, J.; Huang, Z.; Qin, H. Multi-correlation strategies fusion acquisition method for high data rate global navigation satellite system signals. IET Signal Process. 2015, 9, 623–630. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhang, P.; Zheng, Y. Improved algorithm for weak GPS signal acquisition based on delay-accumulation method. Acta Geod. Cartogr. Sin. 2016, 45, 44–49. [Google Scholar]
- Yang, J.; Jin, T.; Huang, Z.; Qin, H. Data and pilot optimized combining method for new composite global navigation satellite system signal acquisition. IET Radar Sonar Navig. 2016, 10, 953–965. [Google Scholar]
- Ta, T.H.; Qaisar, S.U.; Dempster, A.G.; Dovis, F. Partial differential post-correlation processing for GPS L2C signal acquisition. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1287–1305. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, Y.F. An innovative scheme for SINS/GPS ultra-tight integration system with low-grade IMU. Aerosp. Sci. Technol. 2012, 23, 452–460. [Google Scholar] [CrossRef]
Dataset No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Data Type | 8-bit Real Data | 8-bit Real Data | 8-bit Real Data | 8-bit Complex Data |
Intermediate Frequency (MHz) | 7.4 | 7.4 | 7.6 | −0.02 |
Conventional Sampling Frequency (MHz) | 53 | 53 | 79.25 | 4 |
Acquired Satellites | Acquisition without the Resampling Strategy | Acquisition with the Resampling Strategy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRN | CNo (dB-Hz) | Frequency | Doppler | Code Phase | Magnitude | Ratio | Frequency | Doppler | Code Phase | Magnitude | Ratio |
(MHz) | (Hz) | (samples) | / | / | (MHz) | (Hz) | (samples) | / | / | ||
5 | 38.0 | 7.39649 | −3507 | 701962 | 21976 | 3.9492 | 7.39649 | −3508 | 701963 | 2210 | 3.9103 |
6 | 42.8 | 7.40103 | 1032 | 356345 | 40595 | 6.8311 | 7.40103 | 1033 | 356347 | 4033 | 6.2393 |
12 | 43.1 | 7.39853 | −1470 | 193389 | 40928 | 7.0512 | 7.39853 | −1465 | 193394 | 3983 | 7.2284 |
17 | 33.7 | 7.40119 | 1187 | 879016 | 14909 | 2.6156 | 7.40119 | 1186 | 879013 | 1546 | 2.6421 |
24 | 33.2 | 7.40152 | 1522 | 829115 | 14041 | 2.6483 | 7.40152 | 1522 | 829119 | 1342 | 2.2496 |
25 | 35.9 | 7.39697 | −3027 | 621138 | 18820 | 3.4106 | 7.39697 | −3030 | 621140 | 1843 | 3.2997 |
29 | 27.6 | 7.39708 | −2920 | 933174 | 12710 | 2.1654 | 7.39708 | −2922 | 933179 | 1196 | 2.1817 |
DataSet No. | Acquisition without the Resampling Strategy | Acquisition with the Resampling Strategy | ||||
---|---|---|---|---|---|---|
Sampling Frequency (MHz) | Computation () | Time Cost (s) | Sampling Frequency (MHz) | Computation () | Time Cost (s) | |
1 | 53.00 | (6.8 × 1011, 1.3 × 1012) | 2486 | 5.97 | (6.7 × 1010, 1.3 × 1011) | 246.8 |
2 | 53.00 | (6.8 × 1011, 1.3 × 1012) | 2467 | 5.97 | (6.7 × 1010, 1.3 × 1011) | 244.9 |
3 | 79.25 | (1.1 × 1012, 2.0 × 1012) | 3455 | 6.13 | (6.9 × 1010, 1.3 × 1011) | 268.5 |
4 | 4.00 | (4.4 × 1010, 8.2 × 1011) | 109.5 | 2.36 | (2.5 × 1010, 4.7 × 1011) | 70.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Li, Y. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time. Sensors 2018, 18, 678. https://doi.org/10.3390/s18020678
Zhang Y, Wang M, Li Y. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time. Sensors. 2018; 18(2):678. https://doi.org/10.3390/s18020678
Chicago/Turabian StyleZhang, Yeqing, Meiling Wang, and Yafeng Li. 2018. "Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time" Sensors 18, no. 2: 678. https://doi.org/10.3390/s18020678