Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy
<p>Schematic diagram of QTF.</p> "> Figure 2
<p>Schematic of the QTF testing system. Four parts are included: QTF-exciting unit, amplitude-frequency measurement unit, microscope and displacement control unit.</p> "> Figure 3
<p>The typical experiment amplitude-frequency curve of the QTF lateral (shear) vibrating at the (<b>a</b>) low mode and (<b>b</b>) high mode.</p> "> Figure 4
<p>(<b>a</b>) QTF-probe and (<b>b</b>) meshing map in the numerical calculation.</p> "> Figure 5
<p>Displacement curve with an increasing force for calculating the spring constant <span class="html-italic">k</span> of a bare QTF.</p> "> Figure 6
<p>Model of the probe connection.</p> "> Figure 7
<p>(<b>a</b>) Resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor changing with the increase of the probe diameter for tungsten and the glass fiber probes. The five-pointed star symbols denote experimental results.</p> "> Figure 8
<p>(<b>a</b>) Resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor changing with the increase of the extension length for tungsten and the glass fiber probes.</p> "> Figure 9
<p>(<b>a</b>) Resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor changes with an increase of the tungsten probe diameters under a deviation of the probe position.</p> "> Figure 10
<p>Three kinds of QTF-p configurations.</p> "> Figure 11
<p>(<b>a</b>) Resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor with the increase of the tungsten probe diameter under the probe connection configurations of inside, outside and bottom.</p> "> Figure 12
<p>Resonance frequency and <span class="html-italic">Q</span>-factor of QTF-p without glue (<b>a</b>,<b>b</b>) and with glue (<b>c</b>,<b>d</b>) accompanying the increase of the tungsten probe diameters for two typical probe configurations (asymmetrical and symmetrical).</p> "> Figure 12 Cont.
<p>Resonance frequency and <span class="html-italic">Q</span>-factor of QTF-p without glue (<b>a</b>,<b>b</b>) and with glue (<b>c</b>,<b>d</b>) accompanying the increase of the tungsten probe diameters for two typical probe configurations (asymmetrical and symmetrical).</p> "> Figure 13
<p>Relationship between the high mode (<b>a</b>) resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor with the thickness of the epoxy layer under three typical damping coefficient values.</p> "> Figure 14
<p>(<b>a</b>) Resonance frequency and (<b>b</b>) <span class="html-italic">Q</span>-factor with an increase of the Young’s modulus and thicknesses of the epoxy layer at the high mode.</p> "> Figure 15
<p><span class="html-italic">Q</span>-factor of the QTF-p with changes of the tungsten probe diameter at the high and low modes.</p> "> Figure 16
<p>Resonance amplitude of the QTF-p under (<b>a</b>) the longitudinal and (<b>b</b>) lateral interactions at two modes.</p> "> Figure 17
<p>Approach curves of the QTF-p under a viscous resistance interaction.</p> ">
Abstract
:1. Introduction
2. Characterization of Geometric, Material and Frequency Spectrum Characteristics
3. Optimization Design of QTF-p on Vibration Performance at the High Mode
3.1. Optimization Guidance on the Position of the Attached Probe
3.2. Optimization Guidance on the Choosing of Epoxy Glue
4. Discussion
4.1. Comparison of Force Sensing Ability of the QTF-p Sensor at Low and High Mode
4.2. Comparison between Theory and the FEM Model of the Dynamic Behavior of the QTF-p at the High Mode
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karrai, K.; Grober, R.D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66, 1842–1844. [Google Scholar] [CrossRef]
- Ruiter, A.G.; Veerman, J.A.; Van Der Werf, K.O.; Van Hulst, N.F. Dynamic behavior of tuning fork shear-force feedback. Appl. Phys. Lett. 1997, 71, 28–30. [Google Scholar] [CrossRef]
- Okajima, T.; Hirotsu, S. Study of shear force between glass microprobe and mica surface under controlled humidity. Appl. Phys. Lett. 1997, 71, 545–547. [Google Scholar] [CrossRef]
- Giessibl, F.J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956–3958. [Google Scholar] [CrossRef]
- Karrai, K.; Tiemann, I. Interfacial shear force microscopy. Phys. Rev. B 2000, 62, 13174–13181. [Google Scholar] [CrossRef]
- Otero, J.; Gonzalez, L.; Puig-Vidal, M. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes. Sensors 2012, 12, 4803–4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.; Švec, M.; Müller, M.; Ledinský, M.; Fejfar, A.; Jelínek, P.; Majzik, Z. Characterization of the mechanical properties of qPlus sensors. Beilstein J. Nanotechnol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Labardi, M.; Allegrini, M. Noncontact friction force microscopy based on quartz tuning fork sensors. Appl. Phys. Lett. 2006, 89, 174104. [Google Scholar] [CrossRef]
- Xie, G.; Ding, J.; Zheng, B.; Xue, W. Investigation of adhesive and frictional behavior of GeSbTe films with AFM/FFM. Tribol. Int. 2009, 42, 183–189. [Google Scholar] [CrossRef]
- Cai, W.; Fan, H.Y.; Zhao, J.Y.; Shang, G.Y. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode. Nanoscale Res. Lett. 2014, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ye, X.; Li, X. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe. Meas. Sci. Technol. 2016, 27, 085006. [Google Scholar] [CrossRef]
- Solares, S.D.; Chawla, G. Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Meas. Sci. Technol. 2010, 21, 125502. [Google Scholar] [CrossRef]
- Grober, R.D.; Acimovic, J.; Schuck, J.; Hessman, D.; Kindlemann, P.J.; Hespanha, J.; Morse, A.S.; Karrai, K.; Tiemann, I.; Manus, S. Fundamental limits to force detection using quartz tuning forks. Rev. Sci. Instrum. 2000, 71, 2776–2780. [Google Scholar] [CrossRef]
- Morawski, I.; Spiegelberg, R.; Korte, S.; Voigtländer, B. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications. Rev. Sci. Instrum. 2015, 86, 123703. [Google Scholar] [CrossRef] [PubMed]
- Nony, L.; Bocquet, F.; Para, F.; Loppacher, C. Frequency shift, damping and tunneling current coupling with quartz tuning forks in noncontact atomic force microscopy. Phys. Rev. B 2016, 94, 115421. [Google Scholar] [CrossRef]
- Su, X.D.; Dai, C.C.; Zhang, J.; O’Shea, S.J. Quartz tuning fork biosensor. Biosens. Bioelectron. 2002, 17, 111–117. [Google Scholar] [CrossRef]
- Oiko, V.T.A.; Martins, B.V.C.; Silva, P.C.; Rodrigues, V.; Ugarte, D. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments. Rev. Sci. Instrum. 2014, 85, 035003. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jahng, J.; Kim, K.; Jhe, W. Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 2007, 91, 023117. [Google Scholar] [CrossRef]
- Labardi, M.; Lucchesi, M. Split quartz tuning fork sensors for enhanced sensitivity force detection. Meas. Sci. Technol. 2015, 26, 035101. [Google Scholar] [CrossRef]
- Abrahamians, J.O.; Pham Van, L.; Régnier, S. Contributed Review: Quartz force sensing probes for micro-applications. Rev. Sci. Instrum. 2016, 87, 071502. [Google Scholar] [CrossRef] [PubMed]
- Hida, H.; Shikida, M.; Fukuzawa, K.; Murakami, S.; Sato, K.; Asaumi, K.; Iriye, Y.; Sato, K. Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sens. Actuators A Phys. 2008, 148, 311–318. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Agrait, N.; Rubio-Bollinger, G. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 2009, 20, 215502. [Google Scholar] [CrossRef] [PubMed]
- Labardi, M. Dynamics of probes attached to quartz tuning forks for the detection of surface forces. Nanotechnology 2007, 18, 395505. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Li, X.; Wang, J.; Fu, Y. Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy 2014, 142, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Oria, R.; Otero, J.; González, L.; Botaya, L.; Carmona, M.; Puig-Vidal, M. Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices. Sensors 2013, 13, 7156–7169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, L.; Oria, R.; Botaya, L.; Puig-Vidal, M.; Otero, J. Determination of the static spring constant of electrically-driven quartz tuning forks with two freely oscillating prongs. Nanotechnology 2015, 26, 055501. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Won, D.; Sung, B.; An, S.; Jhe, W. Effective stiffness of qPlus sensor and quartz tuning fork. Ultramicroscopy 2014, 141, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, O.E.; Schwarz, U.D. Numerical performance analysis of quartz tuning fork-based force sensors. Meas. Sci. Technol. 2017, 28, 0151021. [Google Scholar] [CrossRef]
- Dagdeviren, O.E.; Schwarz, U.D. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis. Beilstein J. Nanotechnol. 2017, 8, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Li, X. Research on the Sensing Performance of the Tuning Fork-Probe as a Micro Interaction Sensor. Sensors 2015, 15, 24530–24552. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Herruzo, E.T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 2012, 7, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlgraf-Owens, D.C.; Greusard, L.; Sukhov, S.; De Wilde, Y.; Dogariu, A. Multi-frequency near-field scanning optical microscopy. Nanotechnology 2014, 25, 035203. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jahng, J.; Khan, R.M.; Park, S.; Potma, E.O. Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy. Phys. Rev. B 2017, 95. [Google Scholar] [CrossRef]
- Rice, J.A.; Rice, A.C. Young’s Modulus and Thermal Expansion of Filled Cyanate Ester and Epoxy Resins. IEEE Trans. Appl. Superconduc. 2009, 19, 2371–2374. [Google Scholar] [CrossRef]
- Kabir, A. Vibration Damping Property and Flexural Fatigue Behavior of Glass/Epoxy/Nanoclay Composites. Master’s Thesis, Concordia University, Quebec, QC, Canada, 2013. [Google Scholar]
- Fu, Y.; Pedrini, G.; Li, X. Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Guo, M.; Phua, P.B. Spatially encoded multibeam laser Doppler vibrometry using a single photodetector. Opt. Lett. 2010, 35, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Sader, J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar] [CrossRef]
- Tantussi, F.; Vella, D.; Allegrini, M.; Fuso, F.; Romoli, L.; Rashed, C.A. Shear-force microscopy investigation of roughness and shape of micro-fabricated holes. Precis. Eng. 2015, 41, 32–39. [Google Scholar] [CrossRef]
Material Parameters | Quartz | Chromium | Tungsten | Epoxy |
---|---|---|---|---|
Density (kg/m3) | 2650 | 7190 | 1925 | 2 |
Young’s modulus (GPa) | 78.7 | 279 | 411 | 2–20 |
Damping coefficient (Ns/m) | 0.07–2 × 10−4 | 7 × 10−6 | 0.005 | 0.005–0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, F.; Li, X. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy. Sensors 2018, 18, 336. https://doi.org/10.3390/s18020336
Zhang X, Gao F, Li X. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy. Sensors. 2018; 18(2):336. https://doi.org/10.3390/s18020336
Chicago/Turabian StyleZhang, Xiaofei, Fengli Gao, and Xide Li. 2018. "Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy" Sensors 18, no. 2: 336. https://doi.org/10.3390/s18020336