Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
<p>Location of the one specific synthetic aperture radar geometric calibration field in Henan province, China.</p> "> Figure 2
<p>Positioning error caused by terrain height error.</p> "> Figure 3
<p>Schematic diagram showing the intersection of conjugate points (<span class="html-italic">i</span><sub>1</sub><span class="html-italic">,j</span><sub>1</sub>) and (<span class="html-italic">i</span><sub>2</sub><span class="html-italic">,j</span><sub>2</sub>). Δ<span class="html-italic">h</span>: elevation error of T; △r<sub>1</sub> and △r<sub>2</sub>: positioning errors caused by elevation error; Δ<span class="html-italic">S</span>: deviation of ground plane; Sat 1 and Sat2: satellites; T: ground point; <span class="html-italic">θ</span><sub>1</sub> and <span class="html-italic">θ</span><sub>2</sub>: incidence angles.</p> "> Figure 4
<p>Flow chart of cross-calibration algorithm; <span class="html-italic">h<sub>t</sub></span>; height of the target relative to the surface of the Earth; SRTM: Shuttle Radar Topography Mission.</p> "> Figure 5
<p>Appearance of the corner reflector (<b>left</b>) and its image performance (<b>right</b>).</p> "> Figure 6
<p>Distribution of conjugate points for cross-calibration image pair from the YG-13A (<b>left</b>) and Gaofen-3 satellites (<b>right</b>).</p> "> Figure 7
<p>Distribution of six corner reflectors (CR) in the Google Earth (<b>left</b>) and Data B image (<b>right</b>).</p> ">
Abstract
:1. Introduction
2. Error Sources of GF-3 Absolute Positioning
2.1. Satellite Position and Velocity Error
2.2. SAR System Time Error
2.3. Atmospheric Propagation Delay Error
2.4. Processor-Induced Errors
2.5. Terrain Height Error
3. Geometric Calibration
3.1. Conventional Field Calibration
- Mount the corner reflectors in the calibration field area, obtain ground positions (xt,yt,zt) of the corner reflectors, and acquire calibration field images.
- Extract the accurate image coordinates (i,j) of the corner reflectors, and calculate R and ηp and by using the inverse location algorithm [26] according to Equation (1).
- Calculate the atmospheric propagation delay, and calculate the correction values for the atmospheric propagation delay according to the National Centers for Environmental Prediction global atmospheric parameters, updated every 6 h, and the global vertical total electron content data provided by the Center for Orbit Determination in Europe.
- Obtain accurate values of by applying Equations (7) and (8).
3.2. Cross-Calibration
4. Experiment and Analysis
4.1. Experimental Data
4.2. Cross-Calibration Results
4.3. Comparison with Conventional Field Calibration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Q. System Design and Key Technologies of the GF-3 Satellite. Acta Geod. Cartogr. Sin. 2017, 46, 269–277. [Google Scholar]
- Ding, C.; Liu, J.; Lei, B. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system. J. Radars 2017, 6, 11–16. [Google Scholar]
- Mohr, J.J.; Madsen, S.N. Geometric calibration of ERS satellite SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. PALSAR Radiometric and Geometric Calibration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3915–3932. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef]
- Luscombe, A. Image quality and calibration of RADARSAT-2. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Cape Town, South Africa, 12–17 July 2009; IEEE: Piscataway, NJ, USA, 2010; pp. II-757–II-760. [Google Scholar]
- Luscombe, A.P. RADARSAT-2 SAR image quality and calibration operations. Can. J. Remote Sens. 2004, 30, 345–354. [Google Scholar] [CrossRef]
- Schwerdt, M.; Bräutigam, B.; Bachmann, M.; Döring, B. Efficient calibration and first results of TerraSAR-X. In Proceedings of the Advanced SAR Workshop (ASAR), Vancouver, BC, Canada, 11–13 September 2007. [Google Scholar]
- Schwerdt, M.; Bräutigam, B.; Bachmann, M.; Döring, B.; Schrank, D.; Gonzalez, J.H. Final TerraSAR-X calibration result based on novel efficient methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 677–689. [Google Scholar] [CrossRef]
- Schubert, A.; Small, D.; Miranda, N.; Geudtner, D.; Meier, E. Sentinel-1A Product Geolocation Accuracy: Commissioning Phase Results. Remote Sens. 2015, 7, 9431–9449. [Google Scholar] [CrossRef]
- Schwerdt, M.; Schmidt, K.; Tous-Ramon, N.; Castellanos-Alfonzo, G.; Doring, B.; Zink, M.; Prats, P. Independent Verification of the Sentinel-1A System Calibration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 994–1007. [Google Scholar] [CrossRef]
- Eineder, M.; Minet, C.; Steigenberger, P.; Cong, X.; Fritz, T. Imaging Geodesy—Towards Centimeter Level Ranging Accuracy With TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2010, 49, 661–671. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, G.; Deng, M. Multimode Hybrid Geometric Calibration of Spaceborne SAR Considering Atmospheric Propagation Delay. Remote Sens. 2017, 9, 464. [Google Scholar] [CrossRef]
- Xu, K.; Jiang, Y.; Zhang, G.; Zhang, Q.; Wang, X. Geometric Potential Assessment for ZY3-02 Triple Linear Array Imagery. Remote Sens. 2017, 9, 658. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Hong, W. The Analysis of the Precision in Space-borne SAR Image Location. J. Remote Sens. 2006, 10, 76–81. [Google Scholar]
- Zhao, R.; Zhang, G.; Deng, M.; Xu, K.; Guo, F. Geometric Calibration and Accuracy Verification of the GF-3 Satellite. Sensors 2017, 17, 1977. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, B.; Schwerdt, M.; Bachmann, M. The External Calibration of TerraSAR-X, a Multiple Mode SAR-System. In Proceedings of the European Conference on Synthetic Aperture Radar, DLR, Dresden, Germany, 16–18 May 2006; p. 4. [Google Scholar]
- Michael, J.; Donat, P.; David, S.; Schubert, A.; Meier, E. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements. Sensors 2008, 8, 8479–8491. [Google Scholar] [Green Version]
- Schubert, A.; Jehle, M.; Small, D.; Meier, E. Influence of Atmospheric Path Delay on the Absolute Geolocation Accuracy of TerraSAR-X High-Resolution Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Breit, H.; Fritz, T.; Balss, U.; Lachaise, M.; Niedermeier, A.; Vonavka, M. TerraSAR-X SAR Processing and Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 727–740. [Google Scholar] [CrossRef]
- Small, D.; Schubert, A. Guide to ASAR Geocoding; University of Zurich: Zürich, Switzerland, 2008; Available online: http://www.geo.uzh.ch/microsite/rsl-documents/research/publications/other-sci-communications/2008_RSL-ASAR-GC-AD-v101-0335607552/2008_RSL-ASAR-GC-AD-v101.pdf (accessed on 30 April 2008).
- Qiu, X.; Han, C.; Liu, J. A method for spaceborne SAR geolocation based on continuously moving geometry. J. Radars 2013, 2, 54–59. [Google Scholar] [CrossRef]
- Eftekhari, A.; Saadatseresht, M.; Motagh, M. A study on rational function model generation for TerraSAR-X imagery. Sensors 2013, 13, 12030–12043. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Fei, W.; Li, Z.; Zhu, X.Y.; Li, D.R. Evaluation of the RPC model for spaceborne SAR imagery. Photogramm. Eng. Remote Sens. 2010, 76, 727–733. [Google Scholar] [CrossRef]
- Hua, J.; Zhang, G. Research on the methods of inner calibration of spaceborne SAR. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 914–916. [Google Scholar]
- Chen, E. Study on Ortho-Rectification Methodology of Space-Borne Synthetic Aperture Radar Imagery; Academy of Forestry: Beijing, China, 2004. [Google Scholar]
Satellite | ID | Pixel Distance (m) | Imaging Time | Incidence Angle (°) | Orbit | Side | |
---|---|---|---|---|---|---|---|
Range | Azimuth | ||||||
Data A | |||||||
YG-13A | 13-HN-2016-03-11 | 0.6 | 0.9 | 11 March 2016 | 37.21 | Desc | R |
Data B | |||||||
GF-3 | GF3-HN-2016-11-29 | 2.2 | 2.8 | 14 October 2016 | 37.43 | Desc | R |
Data C | |||||||
GF-3 | GF3-HN-2016-12-30 | 2.2 | 2.6 | 30 December 2016 | 38.66 | Asc | R |
GF-3 | GF3-TJ-2017-02-17 | 2.2 | 3.1 | 17 February 2017 | 33.82 | Desc | R |
GF-3 | GF3-TJ-2017-03-18 | 2.2 | 3.1 | 18 March 2017 | 33.82 | Desc | R |
GF-3 | GF3-TY-2016-12-30 | 2.2 | 2.6 | 30 December 2016 | 38.66 | Asc | R |
GF-3 | GF3-TY-2017-01-11 | 2.2 | 2.8 | 11 January 2017 | 40.07 | Asc | R |
Image Resolution (m) | 1 | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|---|
Incidence Angle (°) | ||||||
20 | 0.040° | 0.085° | 0.175° | 0.260° | 0.350° | 0.435° |
30 | 0.095° | 0.185° | 0.375° | 0.560° | 0.745° | 0.925° |
40 | 0.155° | 0.310° | 0.620° | 0.925° | 1.225° | 1.525° |
50 | 0.220° | 0.440° | 0.885° | 1.315° | 1.745° | 2.165° |
60 | 0.285° | 0.565° | 1.130° | 1.685° | 2.235° | 2.780° |
Direction | Item | Value |
---|---|---|
Azimuth | +0.322 ms | |
Range | −61.02 ns |
Test Site | ID | Range (m) | Azimuth (m) | ||||
---|---|---|---|---|---|---|---|
Max | Min | RMSE | Max | Min | RMSE | ||
Songshan | GF3-HN2016-12-30 | 4.21 | 3.13 | 3.56 | −2.09 | −0.98 | 1.58 |
Tianjin | GF3-TJ-2017-02-17 | −3.50 | −0.79 | 2.20 | −2.21 | −0.31 | 1.53 |
Tianjin | GF3-TJ-2017-03-18 | −1.86 | 0.48 | 1.17 | −1.66 | −0.56 | 1.00 |
Taiyuan | GF3-TY-2016-12-30 | 3.80 | 0.62 | 2.73 | −1.77 | −0.08 | 0.97 |
Taiyuan | GF3-TY-2017-01-11 | 2.49 | 1.82 | 2.26 | −0.93 | −0.05 | 0.83 |
Average | - | - | 2.39 | - | - | 1.18 |
Direction | Item | Value |
---|---|---|
Azimuth | +0.371 ms | |
Range | −61.95 ns |
Test Site | ID | Range (m) | Azimuth (m) | ||||
---|---|---|---|---|---|---|---|
Max | Min | RMSE | Max | Min | RMSE | ||
Songshan | GF3-HN2016-12-30 | 3.93 | 2.86 | 3.28 | −1.77 | −0.65 | 1.28 |
Tianjin | GF3-TJ-2017-02-17 | −3.78 | −1.07 | 2.46 | −1.88 | 0.02 | 1.24 |
Tianjin | GF3-TJ-2017-03-18 | −2.14 | 0.20 | 1.31 | −1.33 | −0.23 | 0.71 |
Taiyuan | GF3-TY-2016-12-30 | 3.53 | 0.34 | 2.47 | −1.44 | −0.13 | 0.76 |
Taiyuan | GF3-TY-2017-01-11 | 2.21 | 1.54 | 1.98 | 1.22 | −0.02 | 0.73 |
Average | - | - | 2.30 | - | - | 0.94 |
Test Site | ID | Range (m) | Azimuth (m) | ||
---|---|---|---|---|---|
A | B | A | B | ||
Songshan | GF3-HN2016-12-30 | 3.28 | 3.56 | 1.28 | 1.58 |
Tianjin | GF3-TJ-2017-02-17 | 2.46 | 2.2 | 1.24 | 1.53 |
Tianjin | GF3-TJ-2017-03-18 | 1.31 | 1.17 | 0.71 | 1.00 |
Taiyuan | GF3-TY-2016-12-30 | 2.47 | 2.73 | 0.76 | 0.97 |
Taiyuan | GF3-TY-2017-01-11 | 1.98 | 2.26 | 0.73 | 0.83 |
Average | 2.30 | 2.39 | 0.94 | 1.18 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Zhang, G.; Zhao, R.; Li, S.; Li, J. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration. Sensors 2017, 17, 2903. https://doi.org/10.3390/s17122903
Deng M, Zhang G, Zhao R, Li S, Li J. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration. Sensors. 2017; 17(12):2903. https://doi.org/10.3390/s17122903
Chicago/Turabian StyleDeng, Mingjun, Guo Zhang, Ruishan Zhao, Shaoning Li, and Jiansong Li. 2017. "Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration" Sensors 17, no. 12: 2903. https://doi.org/10.3390/s17122903