In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique
<p>Schematic of the SS-OCT setup. (<b>A</b>) Schematic of the SS-OCT system. (<b>B</b>) Photograph of a sample <span class="html-italic">Capsicum annuum</span> seed. The dashed line represents the place of OCT scanning beam.</p> "> Figure 2
<p>A 2D SS-OCT image and a histological image. (<b>A</b>) A 2D-SSOCT image of a seed primed with sterile distilled water for one day. (<b>B</b>) An enlarged histology image of the same seed that was used in (<b>A</b>). C: Cotyledon; I: Inner seed coat; N: Non-micropylar endosperm; T: Testa. Dashed red circle shows the enclosed cotyledon regions.</p> "> Figure 3
<p>Comparative growth analysis by 2D SS-OCT of <span class="html-italic">Capsicum annuum</span> seeds primed with different salt solutions. The images were taken on consecutive days for seeds that were soaked in sterile distilled water (SDW) (<b>A1</b>–<b>A5</b>), 0.1 M NaCl solution (<b>B1</b>–<b>B5</b>), 0.2 M NaCl solution (<b>C1</b>–<b>C5</b>), 0.3 M NaCl solution (<b>D1</b>–<b>D5</b>), and 0.4 M NaCl solution (<b>E1</b>–<b>E5</b>). C: Cotyledon; EM: embryo; I: Inner seed coat; T: Testa. The scale bar of 400 µm applies to all 2D images.</p> "> Figure 4
<p>Statistical analysis of 2D OCT images using depth profile analysis. (<b>A</b>) The recorded average seed weight fluctuations during monitoring period. (<b>B</b>,<b>C</b>) Representative 2D-OCT images marked with embryo region in a seed. (<b>D</b>) The measured average embryo thickness using depth profile analysis of all seed groups during the monitoring period.</p> "> Figure 5
<p>SS-OCT images acquired on Day 3 after priming the <span class="html-italic">Capsicum annuum</span> seeds with different solutions. The bottom figure is the respective averaged and normalized depth profile analysis plot (as discussed in <a href="#sec2dot4-sensors-17-02887" class="html-sec">Section 2.4</a>) for SDW, 0.1 M NaCl, 0.2 M NaCl, 0.3 M NaCl, and 0.4 M NaCl, which are correspondingly shown with colors of red, blue, green, black, and magenta plots.</p> "> Figure 6
<p>SS-OCT images on Day 9 after priming the <span class="html-italic">Capsicum annuum</span> seeds with different solutions. Bottom figure is the respective averaged and normalized depth profile analysis plot (as discussed in <a href="#sec2dot4-sensors-17-02887" class="html-sec">Section 2.4</a>) for SDW, 0.1 M NaCl, 0.2 M NaCl, 0.3 M NaCl, and 0.4 M NaCl, which are correspondingly shown with colors of red, blue, green, black, and magenta plots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Preperation of Seed Specimens and Experimental Conditions
2.2. Specimen Preperation Forhistological Analysis
2.3. OCT System Setup
2.4. Depth Profile Analysis Algorithm
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martínez-Maldonado, F.E.; Miranda-Lasprilla, D.; Magnitskiy, S. Sugar apple (Annona squamosa L., annonaceae) seed germination: Morphological and anatomical changes. Agron. Colomb. 2013, 31, 176–183. [Google Scholar]
- Smith, P.T.; Cobb, B.G. Accelerated germination of pepper seed by priming with salt solutions and water. HortScience 1991, 26, 417–419. [Google Scholar]
- Stoffella, P.J.; Di Paola, M.L.; Pardossi, A.; Tognoni, F. Seedling root morphology and shoot growth after seed priming or pregermination of bell pepper. HortScience 1992, 27, 214–215. [Google Scholar]
- Yadav, P.V.; Kumari, M.; Ahmed, Z. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res. J. Seed Sci. 2011, 4, 125–136. [Google Scholar] [CrossRef]
- Nimmi, V.; Madhu, G. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum L.). Int. Agrophy. 2009, 23, 195–198. [Google Scholar]
- Watkins, J.T.; Cantliffe, D.J. Mechanical resistance of the seed coat and endosperm during germination of capsicum annuum at low temperature. Plant Physiol. 1983, 72, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Bojović, B.; Đelić, G.; Topuzović, M.; Stanković, M. Effects of nacl on seed germination in some species from families brassicaceae and solanaceae. Kragujev. J. Sci. 2010, 32, 83–87. [Google Scholar]
- Ramana, S.; Biswas, A.; Kundu, S.; Saha, J.; Yadava, R. Effect of distillery effluent on seed germination in some vegetable crops. Bioresour. Technol. 2002, 82, 273–275. [Google Scholar] [CrossRef]
- Fargašová, A. Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull. Environ. Contam. Toxicol. 1994, 52, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Chartzoulakis, K.; Klapaki, G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 2000, 86, 247–260. [Google Scholar] [CrossRef]
- Khan, H.; Ayub, C.; Pervez, M.; Bilal, R.; Shahid, M.; Ziaf, K. Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ. 2009, 28, 81–87. [Google Scholar]
- Silva, C.; Martínez, V.; Carvajal, M. Osmotic versus toxic effects of NaCl on pepper plants. Biol. Plant. 2008, 52, 72–79. [Google Scholar] [CrossRef]
- Zeng, L.; Shannon, M.C. Salinity effects on seedling growth and yield components of rice. Crop Sci. 2000, 40, 996–1003. [Google Scholar]
- Francois, L.; Donovan, T.; Maas, E. Salinity effects on seed yield, growth, and germination of grain sorghum. Agron. J. 1984, 76, 741–744. [Google Scholar] [CrossRef]
- Débarre, D.; Supatto, W.; Pena, A.-M.; Fabre, A.; Tordjmann, T.; Combettes, L.; Schanne-Klein, M.-C.; Beaurepaire, E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 2006, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Genda, Y.; Sato, K.; Nunomura, O.; Hirabayashi, T.; Ohnishi, J.; Tsuda, S. Immunolocalization of pepper mild mottle virus in capsicum annuum seeds. J. Gen. Plant Pathol. 2005, 71, 238–242. [Google Scholar] [CrossRef]
- Beeckman, T.; De Rycke, R.; Viane, R.; Inzé, D. Histological study of seed coat development in arabidopsis thaliana. J. Plant Res. 2000, 113, 139–148. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, T.; Sreenivasulu, N.; Rokitta, M.; Rolletschek, H.; Göbel, C.; Rutten, T.; Radchuk, V.; Feussner, I.; Wobus, U.; Jakob, P. Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnol. J. 2008, 6, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Melkus, G.; Rolletschek, H.; Radchuk, R.; Fuchs, J.; Rutten, T.; Wobus, U.; Altmann, T.; Jakob, P.; Borisjuk, L. The metabolic role of the legume endosperm: A noninvasive imaging study. Plant Physiol. 2009, 151, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Foucat, L.; Chavagnat, A.; Renou, J.-P. Nuclear magnetic resonance micro-imaging and x-radiography as possible techniques to study seed germination. Sci. Hortic. 1993, 55, 323–331. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bower, B.A.; Izatt, J.A.; Tan, O.; Huang, D. In vivo total retinal blood flow measurement by fourier domain doppler optical coherence tomography. J. Biomed. Opt. 2007, 12, 041215. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Lee, S.H.; Jung, W.; Jang, J.H.; Kim, J. Optical coherence tomography for the diagnosis and evaluation of human otitis media. J. Korean Med. Sci. 2015, 30, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, K.; Wijesinghe, R.E.; Jeon, D.; Lee, S.H.; Jeon, M.; Jang, J.H. Decalcification using ethylenediaminetetraacetic acid for clear microstructure imaging of cochlea through optical coherence tomography. J. Biomed. Opt. 2016, 21, 081204. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Jang, J.H.; Jung, W.; Kim, J. In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope. Opt. Express 2014, 22, 8985–8995. [Google Scholar] [CrossRef] [PubMed]
- Steiner, R.; Kunzi-Rapp, K.; Scharffetter-Kochanek, K. Optical coherence tomography: Clinical applications in dermatology. Med. Laser Appl. 2003, 18, 249–259. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.; Saxer, C.; Xiang, S.; de Boer, J.F.; Nelson, J.S. Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 2000, 25, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Jung, U.; Kim, S.; Kim, J. Non-destructive inspection methods for LEDs using real-time displaying optical coherence tomography. Sensors 2012, 12, 10395–10406. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, J.-H.; Kang, S.-W. Nondestructive defect inspection for LCDs using optical coherence tomography. Displays 2011, 32, 325–329. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Jeon, M.; Kim, J. Structural analysis of polymer composites using spectral domain optical coherence tomography. Sensors 2017, 17, 1155. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Lee, S.-Y.; Jung, H.-Y.; Kim, J.-H. The application of optical coherence tomography in the diagnosis of marssonina blotch in apple leaves. J. Opt. Soc. Korea 2012, 16, 133–140. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Park, K.; Lee, S.-Y.; Jung, H.-Y.; Jeon, M.; Kim, J. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J. Spectrosc. 2016, 2016, 1093734. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical inspection and morphological analysis of diospyros kaki plant leaves for the detection of circular leaf spot disease. Sensors 2016, 16, 1282. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lee, S.-Y.; Kim, J.-Y.; Jung, H.-Y.; Kim, J. Optical sensing method for screening disease in melon seeds by using optical coherence tomography. Sensors 2011, 11, 9467–9477. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Moon, B.; Jung, H.-Y.; Jeon, M.; Kim, J. Bio-photonic detection method for morphological analysis of anthracnose disease and physiological disorders of diospyros kaki. Opt. Rev. 2017, 24, 199–205. [Google Scholar] [CrossRef]
- Kholodnykh, A.I.; Petrova, I.Y.; Motamedi, M.; Esenaliev, R.O. Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 210–221. [Google Scholar] [CrossRef]
- Scolaro, L.; McLaughlin, R.A.; Klyen, B.R.; Wood, B.A.; Robbins, P.D.; Saunders, C.M.; Jacques, S.L.; Sampson, D.D. Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography. Biomed. Opt. Express 2012, 3, 366–379. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Kim, J.; Jung, H.-Y.; Jeon, M.; Lee, S.-Y. In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique. Sensors 2017, 17, 2887. https://doi.org/10.3390/s17122887
Ravichandran NK, Wijesinghe RE, Shirazi MF, Kim J, Jung H-Y, Jeon M, Lee S-Y. In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique. Sensors. 2017; 17(12):2887. https://doi.org/10.3390/s17122887
Chicago/Turabian StyleRavichandran, Naresh Kumar, Ruchire Eranga Wijesinghe, Muhammad Faizan Shirazi, Jeehyun Kim, Hee-Young Jung, Mansik Jeon, and Seung-Yeol Lee. 2017. "In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique" Sensors 17, no. 12: 2887. https://doi.org/10.3390/s17122887