Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links
<p>Multi-layer sensing model. (<b>a</b>) line-of-sight (LOS) scenario; (<b>b</b>) non-line-of-sight (NLOS) scenario.</p> "> Figure 2
<p>Geography map and link label of each sensing layer. (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario.</p> "> Figure 3
<p>Experimental setup for walker classification in: (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario.</p> "> Figure 4
<p>Sensory data streams generated by two individuals. (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario; RSS: received signal strength.</p> "> Figure 5
<p>Block diagram of the walker classification process. RF: radio frequency; VQ: vector quantization; HMM: hidden Markov model.</p> "> Figure 6
<p>Average correct recognition rates as a function of the size of vector quantization (VQ) codebook for the three-layer sensing networks. (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario.</p> "> Figure 7
<p>Average correct recognition rates as a function of the number of hidden states and Gaussian models in hidden Markov model (HMM). (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario.</p> "> Figure 8
<p>Average accuracy and standard deviation with respect to different single links. (<b>a</b>) VQ with LOS; (<b>b</b>) HMM with LOS; (<b>c</b>) VQ with NLOS; (<b>d</b>) HMM with NLOS.</p> "> Figure 9
<p>Average accuracy and standard deviation with respect to different dual-links. (<b>a</b>) VQ with LOS; (<b>b</b>) HMM with LOS; (<b>c</b>) VQ with NLOS; (<b>d</b>) HMM with NLOS.</p> "> Figure 10
<p>Average correct recognition rates as a function of the number of fused links. (<b>a</b>) VQ with LOS; (<b>b</b>) HMM with LOS; (<b>c</b>) VQ with NLOS; (<b>d</b>) HMM with NLOS.</p> "> Figure 11
<p>Detection error tradeoff (DET) curves of walker verification in: (<b>a</b>) LOS scenario; (<b>b</b>) NLOS scenario. EER: equal error rate.</p> ">
Abstract
:1. Introduction
2. Related Study
3. Sensing Method
4. VQ- and HMM-Based Walker Classification
4.1. VQ-Based Walker Classification
4.2. HMM-Based Walker Classification
5. Experiment and Results
5.1. Parameter Determination for VQ and HMM
5.2. Recognition Performance with Different Combinations of Links
5.3. Walker Verification
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jain, A.K.; Ross, A.; Pankanti, S. Biometrics: A tool for information security. IEEE Trans. Inf. Forensics Secur. 2006, 1, 125–143. [Google Scholar] [CrossRef]
- Mandeljc, R.; Kovačič, S.; Kristan, M.; Perč, J. Tracking by Identification Using Computer Vision and Radio. Sensors 2013, 13, 241–273. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.Y.; Radwin, R.G. A video-based system for acquiring biomechanical data synchronized with arbitrary events and activities. IEEE Trans. Biomed. Eng. 1995, 42, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Guan, L. A Deformable 3-D Facial Expression Model for Dynamic Human Emotional State Recognition. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 142–157. [Google Scholar] [CrossRef]
- Fairhurst, M.; Erbilek, M.; Costa-Abreu, M.D. Selective Review and Analysis of Aging Effects in Biometric System Implementation. IEEE Trans. Hum. Mach. Syst. 2015, 45, 294–303. [Google Scholar] [CrossRef]
- Muro-de-la Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Nixon, M.S.; Correia, P.L.; Nasrollahi, K.; Moeslund, T.B.; Hadid, A.; Tistarelli, M. On soft biometrics. Pattern Recognit. Lett. 2015, 68, 218–230. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, G.; Huang, T.S. Age Synthesis and Estimation via Faces: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1955–1976. [Google Scholar] [PubMed]
- Derbel, A.; Vivet, D.; Emile, B. Access control based on gait analysis and face recognition. Electron. Lett. 2015, 51, 751–752. [Google Scholar] [CrossRef]
- Ricanek, K.; Savvides, M.; Woodard, D.L.; Dozier, G. Unconstrained Biometric Identification: Emerging Technologies. Computer 2010, 43, 56–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, Y.; Yang, G. Unmatched minutiae: Useful information to boost fingerprint recognition. Neurocomputing 2016, 171, 1401–1413. [Google Scholar] [CrossRef]
- Maceo, A.; Carter, M.; Stromback, B. Palm Prints. In Encyclopedia of Forensic Sciences; Academic Press: Waltham, MA, USA, 2013; pp. 29–36. [Google Scholar]
- Nguyen, K.; Fookes, C.; Jillela, R.; Sridharan, S.; Ross, A. Long range iris recognition: A survey. Pattern Recognit. 2017, 72, 123–143. [Google Scholar] [CrossRef]
- Thomas, K.P.; Vinod, A.P. Toward EEG-Based Biometric Systems: The Great Potential of Brain-Wave-Based Biometrics. IEEE Trans. Syst. Man Cybern. Syst. 2017, 3, 6–15. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Fang, Z.; Xiong, N.; Yoon, S.; Park, D.S. Exploring finger vein based personal authentication for secure IoT. Future Gener. Comput. Syst. 2017, 77, 149–160. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Patel, V.M.; Phillips, P.J.; Chellappa, R. Dictionary-Based Face and Person Recognition From Unconstrained Video. IEEE Access 2015, 3, 1783–1798. [Google Scholar] [CrossRef]
- Balazia, M.; Plataniotis, K.N. Human gait recognition from motion capture data in signature poses. IET Biom. 2017, 6, 129–137. [Google Scholar] [CrossRef]
- Springer, S.; Yogev Seligmann, G. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Luo, J.; Tjahjadi, T.; Gao, Y. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration. Sensors 2014, 14, 6124–6143. [Google Scholar] [CrossRef] [PubMed]
- Savazzi, S.; Sigg, S.; Nicoli, M.; Rampa, V.; Kianoush, S.; Spagnolini, U. Device-Free Radio Vision for Assisted Living: Leveraging wireless channel quality information for human sensing. IEEE Signal Process. Mag. 2016, 33, 45–58. [Google Scholar] [CrossRef]
- Patwari, N.; Wilson, J. RF Sensor Networks for Device-Free Localization: Measurements, Models, and Algorithms. Proc. IEEE 2010, 98, 1961–1973. [Google Scholar] [CrossRef]
- Yu, D.; Guo, Y.; Li, N.; Fang, D. Dictionary Refinement for Compressive Sensing Based Device-Free Localization via the Variational EM Algorithm. IEEE Access 2016, 4, 9743–9757. [Google Scholar] [CrossRef]
- Wilson, J.; Patwari, N. See Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks. IEEE Trans. Mobile Comput. 2011, 10, 612–621. [Google Scholar] [CrossRef]
- Patwari, N.; Wilson, J.; Ananthanarayanan, S.; Kasera, S.K.; Westenskow, D.R. Monitoring Breathing via Signal Strength in Wireless Networks. IEEE Trans. Mob. Comput. 2014, 13, 1774–1786. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, G. A review on radio based activity recognition. Digit. Commun. Netw. 2015, 1, 20–29. [Google Scholar] [CrossRef]
- Savazzi, S.; Kianoush, S.; Rampa, V. A dynamic Bayesian network approach for device-free radio vision: Modeling, learning and inference for body motion recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016; pp. 6265–6269. [Google Scholar]
- Mager, B.; Patwari, N.; Bocca, M. Fall detection using RF sensor networks. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 8–11 September 2013; pp. 3472–3476. [Google Scholar]
- Liu, T.; Liu, J.; Luo, X. Radio Tomographic Imaging based Body Pose Sensing for Fall Detection. J. Ambient Intell. Humaniz. Comput. 2014, 5, 897–907. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.M.; Liu, J. Radio received signal strength based biometric sensing for lightweight walker recognition. In Proceedings of the 2017 IEEE International Conference on Information and Automation, Macau, China, 18–20 July 2017; pp. 189–194. [Google Scholar]
- Woyach, K.; Puccinelli, D.; Haenggi, M. Sensorless Sensing in Wireless Networks: Implementation and Measurements. In Proceedings of the 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Boston, MA, USA, 3–7 April 2006; pp. 1–8. [Google Scholar]
- Kilic, Y.; Wymeersch, H.; Meijerink, A.; Bentum, M.J.; Scanlon, W.G. Device-Free Person Detection and Ranging in UWB Networks. IEEE J. Sel. Top. Signal Process. 2014, 8, 43–54. [Google Scholar] [CrossRef]
- Wicks, M.C.; Himed, B.; Bracken, J.L.E.; Bascom, H.; Clancy, J. Ultra narrow band adaptive tomographic radar. In Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 13–15 December 2005; pp. 36–39. [Google Scholar]
- Radmard, M.; Chitgarha, M.M.; Majd, M.N.; Nayebi, M.M. Ambiguity function of MIMO radar with widely separated antennas. In Proceedings of the 2014 15th International Radar Symposium, Gdańsk, Poland, 16–18 June 2014; pp. 1–5. [Google Scholar]
- Adib, F.; Kabelac, Z.; Katabi, D.; Miller, R.C. 3D Tracking via Body Radio Reflections. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, Seattle, WA, USA, 2–4 April 2014; pp. 317–329. [Google Scholar]
- Patwari, N.; Agrawal, P. Effects of Correlated Shadowing: Connectivity, Localization, and RF Tomography. In Proceedings of the 2008 International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 82–93. [Google Scholar]
- Wilson, J.; Patwari, N. Radio Tomographic Imaging with Wireless Networks. IEEE Trans. Mob. Comput. 2010, 9, 621–632. [Google Scholar] [CrossRef]
- Murray, M.P.; Drought, A.B.; Kory, R.C. Walking Patterns of Normal Men. J. Bone Jt. Surg. Am. 1964, 46, 335–360. [Google Scholar] [CrossRef]
- Murray, M.P. Gait as a total pattern of movement. Am. J. Phys. Med. 1967, 46, 290–333. [Google Scholar] [PubMed]
- Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 1973, 14, 201–211. [Google Scholar] [CrossRef]
- Johansson, G. Visual motion perception. Sci. Am. 1975, 232, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Grimson, W.E.L. Gait analysis for recognition and classification. In Proceedings of the Fifth IEEE International Conference on Automatic Face Gesture Recognition, Washington, DC, USA, 21 May 2002; pp. 148–155. [Google Scholar]
- Zhang, R.; Vogler, C.; Metaxas, D. Human Gait Recognition. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004; p. 18. [Google Scholar]
- Rida, I.; Jiang, X.; Marcialis, G.L. Human Body Part Selection by Group Lasso of Motion for Model-Free Gait Recognition. IEEE Signal Process. Lett. 2016, 23, 154–158. [Google Scholar] [CrossRef]
- Foster, J.P.; Nixon, M.S.; Prugel-Bennett, A. Automatic gait recognition using area-based metrics. Pattern Recognit. Lett. 2003, 24, 2489–2497. [Google Scholar] [CrossRef]
- Vasuki, A.; Vanathi, P.T. A review of vector quantization techniques. IEEE Potentials 2006, 25, 39–47. [Google Scholar] [CrossRef]
- Hansen, J.H.L.; Hasan, T. Speaker Recognition by Machines and Humans: A tutorial review. IEEE Signal Process. Mag. 2015, 32, 74–99. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Brand, M.; Oliver, N.; Pentland, A. Coupled hidden Markov models for complex action recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997; pp. 994–999. [Google Scholar]
- Juang, B.H.; Levinson, S.; Sondhi, M. Maximum likelihood estimation for multivariate mixture observations of markov chains (Corresp.). IEEE Trans. Inf. Theory 1986, 32, 307–309. [Google Scholar] [CrossRef]
- Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Ann. Math. Stat. 1970, 41, 164–171. [Google Scholar] [CrossRef]
- Baum, L.E.; Eagon, J.A. An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 1967, 73, 360–363. [Google Scholar] [CrossRef]
Group A | Group B | Group C | Group D | ||||||||||
No. | Geometry | Links | Angle | Geometry | Links | Angle | Geometry | Links | Angle | Geometry | Links | Distance | |
(label) | (degree) | (label) | (degree) | (label) | (degree) | (label) | (cm) | ||||||
LOS | 1 | {1,2} | {1,5} | {2,5} | {1,6} | 12 | |||||||
2 | {1,3} | {1,9} | {3,9} | {1,11} | 60 | ||||||||
3 | {1,4} | {1,13} | {4,13} | {1,16} | 120 | ||||||||
NLOS | 1 | {1,2} | {1,5} | {2,5} | {1,6} | 12 | |||||||
2 | {1,3} | {1,9} | {3,9} | {1,11} | 60 | ||||||||
3 | {1,4} | {1,13} | {4,13} | {1,16} | 120 |
LOS | NLOS | |||
VQ | HMM | VQ | HMM | |
Top | 11.72% | 6.14% | 24.32% | 19.36% |
Middle | 15.88% | 9.84% | 28.01% | 25.31% |
Bottom | 16.62% | 11.75% | 33.51% | 30.74% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Liang, Z.-q. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links. Sensors 2017, 17, 2815. https://doi.org/10.3390/s17122815
Liu T, Liang Z-q. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links. Sensors. 2017; 17(12):2815. https://doi.org/10.3390/s17122815
Chicago/Turabian StyleLiu, Tong, and Zhuo-qian Liang. 2017. "Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links" Sensors 17, no. 12: 2815. https://doi.org/10.3390/s17122815