Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase
<p>Temporal statistics of loss of lock events (<b>a</b>) and percentage; (<b>b</b>) occurred under ionosphere scintillation.</p> "> Figure 2
<p>Seasonal statistics of loss of lock event by scintillation.</p> "> Figure 3
<p>Seasonal statistics of loss of lock percentage by scintillation (from 2011 to 2015). (<b>a</b>) FMA; (<b>b</b>) MJJ; (<b>c</b>) ASO; and (<b>d</b>) NDJ.</p> "> Figure 4
<p>(<b>a</b>) Daytime amplitude scintillation percentage; (<b>b</b>) Daytime phase scintillation percentage; (<b>c</b>) Daytime loss of lock percentage by scintillation.</p> "> Figure 5
<p>Correlation coefficients between daytime loss of lock percentage and daytime S4, daytime sigma60, daily SSN and daily Kp.</p> "> Figure 6
<p>Spatial statistics of loss of lock percentage by scintillation. (<b>a</b>) 2013; (<b>b</b>) 2014; (<b>c</b>) 2015.</p> "> Figure 7
<p>Loss of lock occurrence percentage towards elevation (<b>a</b>) and azimuth (<b>b</b>) from 2011 to 2015.</p> "> Figure 8
<p>Loss of lock percentage towards geomagnetic storm group A (<b>a</b>) geomagnetic storm group B (<b>b</b>) from 2011 to 2015.</p> "> Figure 9
<p>TEC slips towards geomagnetic storm group A geomagnetic storm group B from 2011 to 2015.</p> ">
Abstract
:1. Introduction
2. Proposed Methods
2.1. Basic Theory of Loss of Lock under Ionosphere Scintillation
2.2. Data Representation
2.3. Analysis Strategy
3. Experiments
3.1. Temporal Statistics of Loss of Lock under Ionosphere Scintillation
3.2. Seasonal Dependence of Loss of Lock under Ionosphere Scintillation
3.3. Daytime Scintillation and Its Effect on Loss of Lock under Ionosphere Scintillation
3.4. Spatial Distribution of Loss of Lock under Ionosphere Scintillation
3.5. Geomagnetic Storm and Its Effect on Loss of Lock under Ionosphere Scintillation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, G.; Ning, B.; Hu, L.; Liu, L.; Yue, X.; Wan, W.; Zhao, B.; Igarashi, K.; Kubota, M.; Otsuka, Y.; et al. Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res. Space Phys. 2010, 115, 507–512. [Google Scholar] [CrossRef]
- Li, G.; Zhao, B.; Liu, L.; Wan, W.; Ding, F.; Liu, J.Y.; Ning, B.; Xu, J.S.; Yumoto, K.; Li, C. Characterizing the 10 November 2004 storm-time middle-latitude plasma bubble and ionospheric scintillation event in Southeast Asia. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Forte, B.; Radicella, S.M. Comparison of ionospheric scintillation models with experimental data for satellite navigation applications. Ann. Geophys. 2005, 48, 505–514. [Google Scholar]
- Xu, R.; Liu, Z.; Li, M.; Morton, Y.; Chen, W. An analysis of low-latitude ionospheric scintillation and its effects on precise point positioning. J. Glob. Position Syst. 2012, 11, 22–32. [Google Scholar] [CrossRef]
- Meggs, R.W.; Mitchell, C.N.; Honary, F. GPS scintillation over the European Arctic during the November 2004 storms. GPS Solut. 2008, 12, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Fortes, L.P.S.; Lin, T.; Lachapelle, G. Effects of the 2012–2013 solar maximum on GNSS signals in Brazil. GPS Solut. 2015, 19, 309–319. [Google Scholar] [CrossRef]
- Akala, A.O.; Doherty, P.H.; Carrano, C.S.; Valladares, C.E.; Groves, K.M. Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications. Radio Sci. 2012, 47, 4007. [Google Scholar] [CrossRef]
- Aquino, M.; Moore, T.; Dodson, A.; Waugh, S.; Souter, J. Implications of ionospheric scintillation for GNSS users in Northern Europe. J. Navig. 2005, 58, 241–256. [Google Scholar] [CrossRef]
- Abe, O.E.; Villamide, X.O.; Paparini, C.; Ngaya, R.H.; Radicella, S.M.; Nava, B. Signature of ionospheric irregularities under different geophysical conditions on SBAS performance in the western African low-latitude region. Ann. Geophys. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Sreeja, V.; Aquino, M.; Elmas, Z.G. Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. Space Weather Int. J. Res. Appl. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Zernov, N.N.; Gherm, V.E.; Strangeways, H.J. Further determinations of strong scintillation effects on GNSS signals using the Hybrid Scintillation Propagation Model. Radio Sci. 2012, 47, 1847–1861. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, S.G.; Wang, Z.M.; Liu, Z.B. Cycle slip detection using multi-frequency GPS carrier Phase observations: A simulation study. Adv. Space Res. 2010, 46, 144–149. [Google Scholar] [CrossRef]
- Cai, C.; Liu, Z.; Xia, P.; Dai, W. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solut. 2013, 17, 247–260. [Google Scholar] [CrossRef]
- Banville, S.; Langley, R.B.; Saito, S.; Yoshihara, T. Handling cycle slips in GPS data during ionospheric plasma bubble events. Radio Sci. 2010, 45, 13456. [Google Scholar] [CrossRef]
- Demyanov, V.V.; Yasyukevich, Y.V.; Ishin, A.B.; Astafyeva, E.I. Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solut. 2012, 16, 181–189. [Google Scholar] [CrossRef]
- Xu, R.; Liu, Z.; Chen, W. Improved FLL-assisted PLL with in-phase pre-filtering to mitigate amplitude scintillation effects. GPS Solut. 2015, 19, 1–14. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Pokhotelov, D.; Macdougall, J.W. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 2010, 28, 1307–1316. [Google Scholar] [CrossRef]
- Yu, J.; Yu, T.M.; Taylor, S.; Pelgrum, W. Characterization of high-latitude ionospheric scintillation of GPS signals. Radio Sci. 2013, 48, 698–708. [Google Scholar]
- Shume, E.B.; Mannucci, A.J.; Butala, M.D.; Pi, X.; Valladares, C.E. Flux tube analysis of L-band ionospheric scintillation. J. Geophys. Res. Space Phys. 2013, 118, 3791–3804. [Google Scholar] [CrossRef]
- Guo, K.; Zhao, Y.; Liu, Y.; Wang, J.L.; Zhang, C.X. Study of Ionospheric Scintillation Characteristics in Australia with GNSS during 2011–2015. Adv. Space Res. 2017, 59, 2909–2922. [Google Scholar] [CrossRef]
- Tran, T.L.; Le, H.M.; Amory-Mazaudier, C.; Fleury, R. Climatology of ionospheric scintillation over the Vietnam low-latitude region for the period 2006–2014. Adv. Space Res. 2017, 60, 1657–1669. [Google Scholar] [CrossRef]
- Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann. Geophys. 2009, 27, 3429–3437. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Pedatella, N.M.; Kou, Y.H. Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather Int. J. Res. Appl. 2016, 14, 285–299. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Abdu, M.A.; Yue, X.; Liu, L.; Wan, W.; Hu, L. On the occurrence of postmidnight equatorial spread F and ionospheric scintillation during June solstice. J. Geophys. Res. Atmos. 2011, 116, 205–211. [Google Scholar]
- Lee, C.C.; Liu, J.Y.; Reinisch, B.W.; Chen, W.S.; Chu, F.D. The effects of the pre-reversal ExB drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Ann. Geophys. 2005, 23, 745–751. [Google Scholar] [CrossRef]
- Basu, S.; Mcclure, J.P.; Basu, S.; Hanson, W.B.; Aarons, J. Coordinated study of equatorial scintillation and in situ and radar observations of nighttime F region irregularities. J. Geophys. Res. Space Phys. 1980, 85, 5119–5130. [Google Scholar] [CrossRef]
- Dao, E.; Kelley, M.C.; Roddy, P.; Retterer, J.; Ballenthin, J.O.; Beaujardiere, O.; Su, Y.J. Longitudinal and seasonal dependence of nighttime equatorial plasma density irregularities during solar minimum detected on the C/NOFS satellite. J. Geophys. Lett. 2011, 38, 415–421. [Google Scholar] [CrossRef]
- Seif, A.; Tsunoda, R.T.; Abdullah, M.; Hasbi, A.M. Daytime gigahertz scintillations near magnetic equator: Relationship to blanketing sporadic E and gradient-drift instability. Earth Planets Space 2015, 67, 177. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut. 2016, 20, 1–10. [Google Scholar] [CrossRef]
- Guo, K.; Liu, Y.; Zhao, Y.; Wang, J.L. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island. Sensors 2017, 17, 137. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.E.; Lean, J.L.; Mcdonald, S.E.; Wang, Y. Comparative ionospheric impacts and solar origins of nine strong geomagnetic storms in 2010–2015. J. Geophys. Res. Space Phys. 2016, 121, 4938–4965. [Google Scholar] [CrossRef]
- Biktash, L.Z. Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms. Ann. Geophys. 2004, 22, 3195–3202. [Google Scholar] [CrossRef]
- Carter, B.A.; Zhang, K.; Norman, R.; Kumar, V.; Kumar, S. On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements. J. Geophys. Res. Space Phys. 2013, 118, 892–904. [Google Scholar] [CrossRef]
- Astafyeva, E.; Yu, Y.; Maksikov, A.; Zhivetiev, I. Geomagnetic storms, super-storms and their impacts on GPS-based navigation systems. Space Weather Int. J. Res. Appl. 2014, 12, 508–525. [Google Scholar] [CrossRef]
Parameters Contained in Files | Definition |
---|---|
Time | The data record universal time, in decimal hours |
PRN | Pseudo-Random Number of the GPS satellite |
Azimuth angle | Azimuth angle of the GPS satellite |
Elevation angle | Elevation angle of the GPS satellite |
L1 Carrier to Noise Ratio | CN0 of the signal measured on the L1 frequency |
Amplitude Scintillation Index S4 | The raw “S4” amplitude scintillation index |
S4 Index Correction(S4Corr) | The estimated error to raw S4 due to internal receiver noise |
FINAL S4 Index (Final_S4) | Final_S4 = S4 − S4Corr |
Phase Scintillation Index (Sigma60) | The raw observed phase scintillation, calculated by the standard deviation of the carrier phase over 1 min |
Group A Strong Storm Cases (Dst ≤ −100 nT) | Group B Weak Storm Cases (Dst > −100 nT) | ||
---|---|---|---|
date | Dst (nT) | date | Dst (nT) |
20110806 | −115 | 20110311 | −83 |
20110926 | −118 | 20110528 | −80 |
20111025 | −134 | 20110910 | −75 |
20120309 | −145 | 20110917 | −69 |
20120424 | −120 | 20120617 | −86 |
20121001 | −122 | 20130607 | −73 |
20121009 | −109 | 20130629 | −98 |
20121114 | −108 | 20130706 | −79 |
20130317 | −131 | 20130714 | −73 |
20130601 | −119 | 20131002 | −67 |
20140219 | −116 | 20140227 | −94 |
20150317 | −223 | 20140412 | −80 |
20150623 | −204 | 20140827 | −80 |
20151007 | −124 | 20150411 | −73 |
20151221 | −148 | 20150816 | −84 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fu, L.; Wang, J.; Zhang, C. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase. Sensors 2017, 17, 2205. https://doi.org/10.3390/s17102205
Liu Y, Fu L, Wang J, Zhang C. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase. Sensors. 2017; 17(10):2205. https://doi.org/10.3390/s17102205
Chicago/Turabian StyleLiu, Yang, Lianjie Fu, Jinling Wang, and Chunxi Zhang. 2017. "Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase" Sensors 17, no. 10: 2205. https://doi.org/10.3390/s17102205
APA StyleLiu, Y., Fu, L., Wang, J., & Zhang, C. (2017). Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase. Sensors, 17(10), 2205. https://doi.org/10.3390/s17102205