An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising
<p>An example extended co-prime array configuration with <math display="inline"> <semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>. The black diamonds are physical sensors. The blue circle represents the difference coarray, while the red cross represents the holes.</p> "> Figure 2
<p>Spectrum comparison between two approaches. The number of snapshots is <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics> </math> and signal-to-noise ratio (SNR) is <math display="inline"> <semantics> <mrow> <mn>0</mn> <mspace width="0.277778em"/> <mi>dB</mi> </mrow> </semantics> </math>. (<b>a</b>) Coarray interpolation in [<a href="#B20-sensors-17-01140" class="html-bibr">20</a>]; (<b>b</b>) Proposed approach.</p> "> Figure 3
<p>Root mean square error (RMSE) vs. SNR for 500 Monte Carlo experiments with <span class="html-italic">Q</span> = 16 sources uniformly distributed in <math display="inline"> <semantics> <mrow> <mo>[</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> <mo>,</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> <mo>]</mo> </mrow> </semantics> </math>. The number of snapshots is <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics> </math>. CRB: Cramér–Rao Bound.</p> "> Figure 4
<p>RMSE vs. the number of snapshots for 500 Monte Carlo experiments with <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics> </math> sources uniformly distributed in <math display="inline"> <semantics> <mrow> <mo>[</mo> <mo>−</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> <mo>,</mo> <msup> <mn>50</mn> <mo>∘</mo> </msup> <mo>]</mo> </mrow> </semantics> </math>. The SNR is <math display="inline"> <semantics> <mrow> <mn>0</mn> <mspace width="0.277778em"/> <mi>dB</mi> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Sorted eigenvalues in the presence of two close sources. There are <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> sources located on <math display="inline"> <semantics> <mrow> <mo>−</mo> <msup> <mn>0.4</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msup> <mn>0.6</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>. The number of snapshots is <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics> </math> and SNR is <math display="inline"> <semantics> <mrow> <mn>0</mn> <mspace width="0.277778em"/> <mi>dB</mi> </mrow> </semantics> </math>. The regularization parameter is set as <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Spectrum for two close sources. There are <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> sources located on <math display="inline"> <semantics> <mrow> <mo>−</mo> <msup> <mn>0.4</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msup> <mn>0.6</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>. The number of snapshots is <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics> </math>, and SNR is <math display="inline"> <semantics> <mrow> <mn>0</mn> <mspace width="0.277778em"/> <mi>dB</mi> </mrow> </semantics> </math>. The regularization parameter is set as <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics> </math>. (<b>a</b>) Use of only coarray interpolation [<a href="#B20-sensors-17-01140" class="html-bibr">20</a>]; (<b>b</b>) Use coarray interpolation followed by denoising (proposed).</p> ">
Abstract
:1. Introduction
2. System Model
3. Coarray Interpolation
3.1. MUSIC Algorithm Based on Coarray
3.2. Co-Prime Coarray Interpolation
4. Hybrid Approach
- The co-prime coarray interpolation step is used to fill the holes. As a result, the lags out of the contiguous range are utilized, leading to a higher number of DOFs than the SS-MUSIC, which only uses the contiguous lags.
- The full rank covariance matrix can be readily established by optimizing (14) from without a spatial smoothing step. This operation can reduce the complexity and is easy to perform.
- In (18), the structure of the covariance matrix of ULA is fully exploited. Thus, the optimal covariance matrix acquired by is Toeplitz and Hermitian, thus enabling effective DOA estimation using a subspace-based algorithm such as the MUSIC. In addition, the complexity is reduced by fully exploiting the structure of . Furthermore, the error matrix is also suppressed effectively, which is the main purpose of the denoising step.
5. Simulation Results
5.1. MUSIC Spectrum Analysis
5.2. Estimation Performance Analysis
5.3. Angular Resolution Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Gu, Y.; Goodman, N.A.; Hong, S.; Li, Y. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 2014, 96, 375–381. [Google Scholar] [CrossRef]
- Gu, Y.; Leshem, A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885. [Google Scholar]
- Chen, T.; Wu, H.; Zhao, Z. The real-valued sparse direction of arrival (DOA) estimation based on the Khatri-Rao product. Sensors 2016, 16, 693. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Y.D.; Wang, W. Robust group compressive sensing for DOA estimation with partially distorted observations. EURASIP J. Adv. Signal Process. 2016, 2016, 128. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, Z.; Gu, Y.; Goodman, N.A. DOA estimation by covariance matrix sparse reconstruction of coprime array. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 2369–2373. [Google Scholar]
- Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source Estimation using Coprime Array: A Sparse Reconstruction Perspective. IEEE Sens. J. 2017, 17, 755–765. [Google Scholar] [CrossRef]
- Wang, B.; Wang, W.; Gu, Y.; Lei, S. Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array. Sensors 2017, 17, 702. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Goodman, N. A. Information-theoretic compressive sensing kernel optimization and Bayesian Cramér-Rao bound for time delay estimation. IEEE Trans. Signal Process. 2016, in press. [Google Scholar]
- Wan, L.; Han, G.; Shu, L.; Chan, S.; Zhu, T. The application of doa estimation approach in patient tracking systems with high patient density. IEEE Trans. Ind. Inf. 2016, 12, 2353–2364. [Google Scholar] [CrossRef]
- Wan, L.; Han, G.; Shu, L.; Chan, S.; Feng, N. PD source diagnosis and localization in industrial high-voltage insulation system via multimodal joint sparse representation. IEEE Trans. Ind. Inf. 2016, 63, 2506–2516. [Google Scholar] [CrossRef]
- Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 172–175. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Gupta, I.; Ksienski, A. Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. Antennas Propag. 1983, 31, 785–791. [Google Scholar] [CrossRef]
- Zhang, Y.; Hirasawa, K.; Fujimoto, K. Signal bandwidth consideration of mutual coupling effects on adaptive array performance. IEEE Trans. Antennas Propag. 1987, 35, 337–339. [Google Scholar] [CrossRef]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Commun. ACM 2012, 55, 111–119. [Google Scholar] [CrossRef]
- Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P.; Piya, P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. [Google Scholar]
- Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Ma, S.; Goldfarb, D.; Chen, L. Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 2011, 128, 321–353. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Process Lett. 2014, 21, 737–741. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Coprime sampling and the MUSIC algorithm. In Proceedings of the 2011 IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), Sedona, AZ, USA, 4–7 January 2011; pp. 289–294. [Google Scholar]
- Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795. [Google Scholar] [CrossRef]
- Wang, M.; Nehorai, A. Coarrays, MUSIC, and the Cramér Rao Bound. IEEE Trans. Signal Process. 2017, 65, 933–946. [Google Scholar] [CrossRef]
- Evans, J.E.; Johnson, J.R.; Sun, D.F. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation. In Proceedings of the 1st ASSP Workshop Spectral Estimation, Hamilton, ON, Canada, 17–18 August 1981; pp. 134–139. [Google Scholar]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digital Signal Process. 2017, 61, 43–61. [Google Scholar] [CrossRef]
Input | The received signal vector . |
Output | DOA Estimation. |
Step 1 | Compute the covariance matrix . |
Step 2 | Reshape to get the signal vector of coarray . |
Step 3 | Optimize (14) to get the covariance matrix . |
Step 4 | Optimize (18) or (19) to get the denoised covariance matrix . |
Step 5 | Perform eigenvalue decomposition of and construct where is the eigenvector corresponding to the smallest eigenvalues. |
Step 6 | Compute and find the Q largest peaks which correspond to the estimation of DOAs. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Chen, T.; Wang, B. An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising. Sensors 2017, 17, 1140. https://doi.org/10.3390/s17051140
Guo M, Chen T, Wang B. An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising. Sensors. 2017; 17(5):1140. https://doi.org/10.3390/s17051140
Chicago/Turabian StyleGuo, Muran, Tao Chen, and Ben Wang. 2017. "An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising" Sensors 17, no. 5: 1140. https://doi.org/10.3390/s17051140
APA StyleGuo, M., Chen, T., & Wang, B. (2017). An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising. Sensors, 17(5), 1140. https://doi.org/10.3390/s17051140