PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices
<p>Polyvinylidene fluoride (PVDF) characterization obtained by (<b>a</b>) Fourier transform infrared spectroscopy and (<b>b</b>) scanning electron microscopy.</p> "> Figure 2
<p>(<b>a</b>) Cross-section and (<b>b</b>) picture of the microfluidic device containing the micro-milled PMMA bulk and the PVDF thin film on which the gold metallizations are deposited to serve as active element and electrical connections to the read-out electronic circuit.</p> "> Figure 3
<p>Analytical temperature difference <span class="html-italic">θ<sub>p</sub></span>(<span class="html-italic">t</span>) between the top absorbing layer, <span class="html-italic">T<sub>U</sub></span>(<span class="html-italic">t</span>), and the lower face, <span class="html-italic">T<sub>L</sub></span>, following a step-shaped infrared (IR) radiation source of 50 mW with a time duration <span class="html-italic">T<sub>IR</sub></span> = 0.3 ms and considering the parameters reported in <a href="#sensors-17-00850-t001" class="html-table">Table 1</a>. By considering similar radiation impulse, according to Equation (4), the higher the thermal time constant, the longer the return to thermal equilibrium (<span class="html-italic">θ<sub>U</sub></span>(<span class="html-italic">t</span>) <span class="html-italic">= θ<sub>L</sub></span>).</p> "> Figure 4
<p>Schematic diagram of the designed charge amplifier.</p> "> Figure 5
<p>Cross section of the device highlighting with the black arrows the heat transfer mechanisms involving (<b>1</b>) infrared thermal absorption, (<b>2</b>) thermal radiation, and (<b>3</b>) thermal conduction.</p> "> Figure 6
<p>Temperature dependence of the response of the pyroelectric sensor to the heat transfer mechanism. For a given time of evaluation, <span class="html-italic">t</span><sub>0</sub> provides the relationship between the output voltage <span class="html-italic">V</span>(<span class="html-italic">t</span><sub>0</sub>) and the temperature of the microchannel.</p> "> Figure 7
<p>Experimental data obtained at five different target temperatures using the heating chamber. The square signal in black represents the signal generated for the IR-LED stimulation. The colored signals represent the output of the sensor at different target temperature. The slope in the time interval [<span class="html-italic">0</span>, <span class="html-italic">T<sub>IR</sub></span>], varies depending on the microchannel temperature (at higher temperatures the response slope decrease). All the responses obtained in the range 25–65 °C are highlighted and the maximum points of the responses at <span class="html-italic">t</span> = <span class="html-italic">T<sub>IR</sub></span> decrease according to Equation (11).</p> "> Figure 8
<p>Calibration curve of the pyroelectric sensor performed inside the microfluidic channel in the temperature range 25–65 °C (as reported in the insert of <a href="#sensors-17-00850-f007" class="html-fig">Figure 7</a>). Charge amplifier voltage are evaluated for each target temperature at the time <span class="html-italic">t</span> = <span class="html-italic">T<sub>IR</sub></span>. These data are expressed as mean ± SD; for each target temperature sensor output voltage was evaluated three times, as reported in the error bars.</p> ">
Abstract
:1. Introduction
2. Pyroelectric Sensor Design
2.1. Device Fabrication
2.2. Pyroelectric Charge Generation
2.3. Charge Amplifier
2.4. Heat Transfer Process
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SOC | System-On-a-Chip |
PVDF | Polyvinylidene-Fluoride |
PZT | Lead Zirconate Titanate |
PMMA | Poly(methyl methacrylate) |
IR | Infrared |
LED | Light Emitting Diode |
CMOS | Complementary Metal Oxide Semiconductor |
References
- Ghallab, Y.H.; El-Hamid, H.A.; Ismail, Y. Lab on a Chip Based on CMOS Technology: System Architectures, Microfluidic Packaging, and Challenges. IEEE Des. Test 2015, 32, 20–31. [Google Scholar] [CrossRef]
- Kubicki, W.; Walczak, R.; Dziuban, J.A. Miniature instrument for lab-on-a-chip capillary gel electrophoresis of DNA utilizing temperature control technique. In Proceedings of the Eurosensors XXV, Athens, Greece, 4–7 September 2011; pp. 1237–1240. [Google Scholar]
- Cao, J.; Cui, F.; Chen, W.; Guo, Z.; Chen, W. Analysis on PCR chip with reusable electrodes and its temperature field. Bandaoti Guangdian Semicond. Optoelectron. 2015, 38, 725–727, 732. [Google Scholar]
- Wu, Z.Y.; Chen, K.; Qu, B.Y.; Tian, X.X.; Wang, X.J.; Fang, F. A thermostat chip of indium tin oxide glass substrate for static polymerase chain reaction and in situ real time fluorescence monitoring. Anal. Chim. Acta 2008, 610, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quijada, J.; Caverhill-Godkewitsch, S.; Reynolds, M.; Gutierrez-Rivera, L.; Johnstone, R.W.; Elliott, D.G.; Sameoto, D.; Backhouse, C.J. Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems. Sens. Actuators A Phys. 2013, 193, 170–181. [Google Scholar] [CrossRef]
- Li, P.; Lei, N.; Sheadel, D.A.; Xu, J.; Xue, W. Integration of nanosensors into a sealed microchannel in a hybrid lab-on-a-chip device. Sens. Actuators B Chem. 2012, 166–167, 870–877. [Google Scholar] [CrossRef]
- Kandlikar, S.G. History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review. J. Heat Transf. 2012, 134, 3. [Google Scholar] [CrossRef]
- Jurków, D.; Roguszczak, H.; Golonka, L. Novel cold chemical lamination bonding technique—A simple LTCC thermistor-based flow sensor. J. Ceram. Soc. 2009, 29, 1971–1976. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Ye, H.; Peng, Y.; Shu, C.; Yang, C.; Zhang, W.; He, H. A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt. Commun. 2015, 339, 1–6. [Google Scholar] [CrossRef]
- Donner, J.S.; Thompson, S.A.; Kreuzer, M.P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein-from in vitro to in vivo. In Proceedings of the Optical Molecular Probes, Imaging and Drug Delivery, OMP 2013, Waikoloa Beach, HI, USA, 14–18 April 2013. [Google Scholar]
- Tanimoto, R.; Hiraiwa, T.; Nakai, Y.; Shindo, Y.; Oka, K.; Hiroi, N.; Funahashi, A. Detection of Temperature Difference in Neuronal Cells. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Bergaud, C. Thermometry in micro and nanofluidics. In Thermometry at the Nanoscale: Techniques and Selected Applications; Carlos, L.D., Palacio, F., Eds.; Royal Society of Chemistry: London, UK, 2016; Volume 2016, pp. 461–492. [Google Scholar]
- Puddu, M.; Mikutis, G.; Stark, W.J.; Grass, R.N. Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability. Small 2016, 12, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Measurement Specialties Inc. Piezo Film Sensors Technical Manual. Available online: https://www.sparkfun.com/datasheets/Sensors/Flex/MSI-techman.pdf (accessed on 31 August 2016).
- Sarker, M.R.H.; Karim, H.; Martinez, R.; Delfin, D.; Enriquez, R.; Ishtiaque Shuvo, M.A.; Love, N.; Lin, Y. Temperature measurements using a lithium niobate (LiNbO3) pyroelectric ceramic. Measurement 2015, 75, 104–110. [Google Scholar] [CrossRef]
- Maiolo, L.; Maita, F.; Pecora, A.; Rapisarda, M.; Mariucci, L.; Benwadih, M.; Jacob, S.; Chartier, I.; Coppard, R. Flexible PVDF-TrFE pyroelectric sensor integrated on a fully printed p-channel organic transistor. Procedia Eng. 2012, 47, 526–529. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Correia, R.G.; Rocha, J.G.; Lanceros-Mendéz, S.; Minas, G. Design and fabrication of piezoelectric microactuators based on β-poly(vinylidene fluoride) films for microfluidic applications. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Pullano, S.A.; Perozziello, G.; Di Fabrizio, E.; Fiorillo, A.S. Pyroelectric PVDF transducer for temperature measurements in fluidic micro-channels. In Proceedings of the E-Health and Bioengineering Conference (EHB), Iasi, Romania, 1–4 November 2011. [Google Scholar]
- Pullano, S.A.; Fiorillo, A.S.; Islam, S.K. A pyroelectric sensor for system-on-a-chip. In Proceedings of the 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 1–2 April 2014. [Google Scholar]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric Sensor for Monitoring the Temperature of Biological Fluids in Micro Channel Devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Sung, M.; Shin, K.; Moon, W. A new transduction mechanism for hydrophones employing piezoelectricity and a field-effect transistor. Sen. Actuators A Phys. 2015, 233, 557–568. [Google Scholar] [CrossRef]
- Peng, G.; Zhao, X.; Zhan, Z.; Ci, S.; Wang, Q.; Liang, Y.; Zhao, M. New crystal structure and discharge efficiency of poly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RCS Adv. 2014, 4, 16849–16854. [Google Scholar] [CrossRef]
- Beuville, E.; Buytaert, S.; Cerri, C.; Jarron, P. Low Noise Analog CMOS Signal Processor with a Large Dynamic Range for Silicon Calorimeters. Nucl. Phys. B Proc. Suppl. 1991, 23, 198–206. [Google Scholar] [CrossRef]
- Junnila, S.; Akbhardeh, A.; Varri, A. An Electromechanical Film Sensor Based Wireless Ballistocardiographic Chair: Implementation and Performance. J. Signal Proc. Syst. 2009, 57, 305–320. [Google Scholar] [CrossRef]
- Sultana, A.; Reznik, A.; Karim, K.S.; Rowlands, J.A. Design and Feasibility of Active Matrix Flat Panel Detector Using Avalanche Amorphous Selenium for Protein Crystallography. Med. Phys. 2008, 35, 4324–4332. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Sarkar, P.K.; Aggarwal, L.; Ghosh, S.K.; Mandal, D.; Sheet, G.; Acharya, S. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir-Schaefer film. Phys. Chem. Chem. Phys. 2015, 17, 8159–8165. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-J.; Tian, W.-C.; Wu, W.-J. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring. Sensors 2013, 13, 5478–5492. [Google Scholar] [CrossRef] [PubMed]
- Zammit, U.; Marinelli, M.; Mercuri, F.; Paoloni, S.; Scudieri, F. Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions. Rev. Sci. Instrum. 2011, 82, 12. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.B. Pyroelectricity: Form ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 8. [Google Scholar] [CrossRef]
- Touayar, O.; Sifi, N.; Ben Brahim, J. Theoretical and experimental study of power radiometric measurements using a pyroelectric current integrator converter. Sens. Actuators A Phys. 2006, 135, 484–491. [Google Scholar] [CrossRef]
- Shao, X.; Ding, J.; Ma, X.; Yu, Y.; Fang, J. Document Design and thermal analysis of electrically calibrated pyroelectric detector. Infrared Phys. Technol. 2012, 55, 45–48. [Google Scholar] [CrossRef]
- Chirtoc, M.; Bentefour, E.H.; Antoniow, J.S.; Glorieux, C.; Thoen, J.; Delenclos, S.; Sahraoui, A.H.; Longuemart, S.; Kolinsky, C.; Buisine, J.M. Current mode versus voltage mode measurement of signals from pyroelectric sensors. Rev. Sci. Instrum. 2003, 74, 648–650. [Google Scholar] [CrossRef]
- Gilber, B. Current Mode, Voltage Mode, or Free Mode? A Few Sage Suggestion. Analog Integr. Circuits Signal Proc. 2004, 38, 83–101. [Google Scholar] [CrossRef]
- Kester, W.; Bryant, J.; Jung, W.; Wurcer, S.; Kitchin, C. Sensor Signal Conditioning. In Op Amp Applications Handbook; Jung, W.G., Ed.; Analog Device Series: Norwood, MA, USA, 2004. [Google Scholar]
- López-Martin, A.J.; Massarotto, M.; Carlosena, A. Performance tradeoffs of integrated CMOS charge amplifiers. In Proceedings of the IEEE Sensors 2009 Conference, Christchurch, New Zealand, 25–28 October 2009. [Google Scholar]
- Lubomirsky, I.; Stafsudd, O. Invited Review Article: Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 2012, 83, 051101. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Young, M.S. Pyroelectric infrared sensor-based thermometer for monitoring indoor objects. Rev. Sci. Instrum. 2003, 74, 12. [Google Scholar] [CrossRef]
- Yoon, H.W.; Eppeldauer, G.P. Radiation Thermometer Designs, in: Radiometric Temperature Measurements. Exp. Methods Phys. Sci. 2009, 42, 133–180. [Google Scholar]
- Querner, Y.; Norkus, V.; Gerlach, G. High-sensitive Pyroelectric detectors with internal thermal amplification. Sens. Actuators A Phys. 2011, 172, 169–174. [Google Scholar] [CrossRef]
- Campanella, H.; Narducci, M.; Soon, J.B.W.; Merugu, S.; Ferrari, M.; Ferrari, V.; Singh, N. Multi-sensitive temperature sensor platforms using aluminum nitride MEMS resonators. J. Micromech. Microeng. 2015, 25, 1–12. [Google Scholar] [CrossRef]
- DeWitt, D.P.; Nutter, G.D. Theory and Practice of Radiation Thermometry; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- Buchanan, R.; Huang, J. Pyroelectric and sensor properties of ferroelectric thin films for energy conversion. J. Eur. Ceram. Soc. 1999, 19, 1467–1471. [Google Scholar] [CrossRef]
- Cuadras, M.; Gasulla Ferrari, V. Thermal energy harvesting through pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Ravindran, S.K.T.; Huesgen, T.; Kroener, M.; Woias, P. A Self-Sustaining Pyroelectric Energy Harvester Utilizing Spatial Thermal Gradients. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11, Beijing, China, 5–9 June 2011. [Google Scholar]
- Chang, H.H.S.; Huang, Z. Laminate composites with enhanced pyroelectric effects for energy harvesting. Smart Mater. Struct. 2010, 19, 1. [Google Scholar] [CrossRef]
- Mane, P.; Xie, J.; Leang, K.; Mossi, K. Cyclic energy harvesting from pyroelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 538–551. [Google Scholar] [CrossRef] [PubMed]
- ADInstruments. Available online: http://m-cdn.adinstruments.com/product-data-cards/MLT1402-DCW-15A.pdf (accessed on 16 May 2016).
Value | ||
---|---|---|
Active surface [A] | 10−6 | [m2] |
Thermal capacitance [Cth] | 32 × 10−6 | [J·K−1] |
Absorption coefficient [α] | 0.7 | |
Irradiance [I] | 10−3 | [W·m−2] |
Surface emissivity [δ] | 0.7 | |
Stefan–Boltzmann constant [σ] | 5.67 × 10−8 | [W·m−2·K−4] |
PVDF specific heat [cp] | 1.4 × 103 | [J·kg−1·K−1] |
PVDF thermal conductivity [Rth−1] | 0.2 | [W·m−1·K−1] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Mahbub, I.; Islam, S.K.; Fiorillo, A.S. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors 2017, 17, 850. https://doi.org/10.3390/s17040850
Pullano SA, Mahbub I, Islam SK, Fiorillo AS. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors. 2017; 17(4):850. https://doi.org/10.3390/s17040850
Chicago/Turabian StylePullano, Salvatore A., Ifana Mahbub, Syed K. Islam, and Antonino S. Fiorillo. 2017. "PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices" Sensors 17, no. 4: 850. https://doi.org/10.3390/s17040850
APA StylePullano, S. A., Mahbub, I., Islam, S. K., & Fiorillo, A. S. (2017). PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors, 17(4), 850. https://doi.org/10.3390/s17040850