Satellite Jitter Estimation and Validation Using Parallax Images
<p>Flow chart of jitter estimation and validation.</p> "> Figure 2
<p>The simulated jitter displacement curves and registration error curves at different imaging time intervals.</p> "> Figure 3
<p>The simulated registration error curves caused by satellite jitter (SJ) at different imaging time intervals: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> <mi>T</mi> <mo>,</mo> <mn>0.2</mn> <mi>T</mi> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>0.5</mn> <mi>T</mi> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>0.5</mn> <mi>T</mi> <mo>,</mo> <mn>0.6</mn> <mi>T</mi> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>0.9</mn> <mi>T</mi> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Multispectral image of ZY-3 satellite.</p> "> Figure 5
<p>The relative registration error curves of different band combinations (<b>a</b>) B1-B2; (<b>b</b>) B2-B3; (<b>c</b>) B1-B3.</p> "> Figure 6
<p>The absolute registration error curves of different bands (<b>a</b>) B1; (<b>b</b>) B2; (<b>c</b>) B3.</p> "> Figure 7
<p>High Resolution (HR) image of ZY1-02C.</p> "> Figure 8
<p>(<b>a</b>) The relative registration error curve between CCD1 and CCD2; (<b>b</b>) The absolute registration error curve of CCD1.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Jitter Displacement Estimation Modelling
2.2. Workflow of Jitter Displacement Estimation and Validation
3. Experiments and Discussion
3.1. Simulation Experiments
- (1)
- Whether the frequency of is consistent with the frequency of ;
- (2)
- Whether the relationship between amplitudes of and satisfies the Equation (10);
- (3)
- Whether the relationship between phases of and satisfies Equation (13).
3.2. Real Image Experiments
3.2.1. Experiment Using Multispectral Images of ZY-3 Satellite
3.2.2. Experiment Using HR Images of ZY1-02C
4. Conclusions
- (1)
- The deduced quantitative relationship between the jitter displacement and relative registration error obtained from parallax images in the presented paper is more accurate than our previous work. In our previous works, the relationship has only been approximated. However, the present work deduced an accurate quantitative relationship between the jitter displacement and relative registration error obtained from parallax images without any approximation.
- (2)
- The deduced quantitative relationship between the jitter displacement and relative registration error obtained from parallax images in the presented paper is more robust than our previous work. The deduced quantitative relationship in our previous work is not an accurate expression, as its accuracy decreased when the imaging time interval increased. Obviously, such a relationship is not suitable to parallax images with large imaging time intervals such as those from the High Resolution camera of ZY1-02C. In the presented paper, the deduced quantitative relationship is accurate without any approximation. It is suitable to parallax images with any imaging time interval. Two typical images, the multispectral images of ZY-3 satellite (with a short imaging time interval between different adjacent bands of either 121.6 ms or 120.4 ms) and the HR images of ZY1-02C satellite (with a long imaging time interval between adjacent CCD arrays of about 0.91 s), were chosen as experimental data and validated the deduced relationship.
- (3)
- High accuracy ground reference data were used to evaluate the accuracy of the jitter displacement estimation in real image experiments in the presented paper. It is an objective method. In our previous work, the accuracy of the jitter displacement estimation in real image experiments wasn’t evaluated. Other references also didn’t evaluate the accuracy of the jitter displacement detection. Generally, they evaluated the images after jitter correction [3].
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, D.S.; Storey, J.C.; Choate, M.J.; Hayes, R.W. Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2786–2795. [Google Scholar] [CrossRef]
- Storey, J.C.; Choate, M.J.; Meyer, D.J. A geometric performance assessment of the EO-1 advanced land imager. IEEE Trans. Geosci. Remote Sens. 2004, 42, 602–607. [Google Scholar] [CrossRef]
- Iwasaki, A. Detection and Estimation Satellite Attitude Jitter Using Remote Sensing Imagery. Adv. Spacecr. Technol. 2011, 13, 257–272. [Google Scholar]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- Tong, X.; Li, L.; Liu, S.; Xu, Y.; Ye, Z.; Jin, Y.; Wang, F.; Xie, H. Detection and estimation of ZY-3 three-line array image distortions caused by attitude oscillation. ISPRS J. Photogramm. Remote Sens. 2015, 101, 291–309. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Binety, R.; Lewis, K.W.; Aharonson, O.; Avouac, J.P. Influence of camera distortions on satellite image registration and change detection applications. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008.
- Takaku, J.; Tadono, T. High resolution DSM generation from ALOS PRISM-Processing Status and Influence of Attitude Fluctuation. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010.
- Zhang, L.; Gruen, A. Multi-image matching for DSM generation from IKONOS imagery. ISPRS J. Photogramm. Remote Sens. 2006, 60, 195–211. [Google Scholar] [CrossRef]
- Kocaman, S.; Gruen, A. Orientation and self-calibration of ALOS PRISM imagery. Photogramm. Rec. 2008, 23, 323–340. [Google Scholar] [CrossRef]
- Roques, S.; Jahan, L.; Rougé, B.; Thiebaut, C. Satellite attitude instability effects on stereo images. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004.
- Teshima, Y.; Iwasaki, A. Correction of Attitude Fluctuation of Terra Spacecraft Using ASTER/SWIR Imagery with Parallax Observation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 222–227. [Google Scholar] [CrossRef]
- Mattson, S.; Boyd, A.; Kirk, R.; Cook, D.; Howington-Kraus, E. HiJACK: Correcting spacecraft jitter in HiRISE images of Mars. In Proceedings of the 2009 European Planetary Science Congress, Potsdam, Germany, 13–18 September 2009.
- Amberg, V.; Dechoz, C.; Bernard, L.; Greslou, D.; De Lussy, F.; Lebegue, L. In-flight attitude perturbances estimation: Application to PLEIADES-HR satellites. In Proceedings of the Earth Observing Systems XVIII, San Diego, CA, USA, 25–29 August 2013.
- Jiang, Y.; Zhang, G.; Tang, X.; Li, D.; Huang, W.C. Detection and Correction of Relative Attitude Errors for ZY1-02C. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7674–7683. [Google Scholar] [CrossRef]
- Sun, T.; Long, H.; Liu, B.C.; Li, Y. Application of attitude jitter detection based on short-time asynchronous images and compensation methods for Chinese mapping satellite-1. Opt. Express 2015, 23, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Xu, Y.; Ye, Z.; Liu, S.; Tang, X.; Li, L.; Xie, H.; Xie, J. Attitude Oscillation Detection of the ZY-3 Satellite by Using Multispectral Parallax Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3522–3534. [Google Scholar] [CrossRef]
- Tong, X.; Ye, Z.; Xu, Y.; Tang, X.; Liu, S.; Li, L.; Xie, H.; Wang, F.; Li, T.; Hong, Z. Framework of Jitter Detection and Compensation for High Resolution Satellites. Remote Sens. 2014, 6, 3944–3964. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, M.; Pan, J.; Hu, F. Detection of ZY-3 Satellite Platform Jitter Using Multi-spectral Imagery. Acta Geod. Cartogr. Sin. 2015, 44, 399–406. [Google Scholar]
- Wang, M.; Zhu, Y.; Pan, J.; Yang, B.; Zhu, Q. Satellite jitter detection and compensation using multispectral imagery. Remote Sens. Lett. 2016, 7, 513–522. [Google Scholar] [CrossRef]
- Mattson, S.; Robinson, M.; McEwen, A.; Bartels, A.; Bowman-Cisneros, E.; Li, R.; Lawver, J.; Tran, T.; Paris, K.; Team, L. Early Assessment of Spacecraft Jitter in LROC-NAC. In Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010.
- Hadar, O.; Fisher, M.; Kopeika, N.S. Image resolution limits resulting from mechanical vibrations. Part III: numerical calculation of modulation transfer function. Opt. Eng. 1992, 31, 581–589. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, B.; Zhang, G.; Tang, X. Multispectral image registration and accuracy analysis of ZY-3 satellite. In Proceedinsg of the First International Conference on Agro-geoinformatics, Shanghai, China, 2–4 August 2012.
Simulation | 0.1T | 0.2T | 0.3T | 0.4T | 0.5T | 0.6T | 0.7T | 0.8T | 0.9T |
---|---|---|---|---|---|---|---|---|---|
0.4848 | 0.4848 | 0.4848 | 0.4848 | 0.4848 | 0.4848 | 0.4848 | 0.4848 | 0.4848 | |
0.29960 | 0.56996 | 0.7844 | 0.92211 | 0.96960 | 0.9221 | 0.78440 | 0.56996 | 0.2996 | |
Y | Y | Y | Y | Y | Y | Y | Y | Y |
Simulation | 0.1T | 0.2T | 0.3T | 0.4T | 0.5T | 0.6T | 0.7T | 0.8T | 0.9T |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1.8850 | 2.1991 | 2.5133 | 2.8274 | 3.1416 | 3.4558 | 3.7699 | 4.0841 | 4.3982 | |
Y | Y | Y | Y | Y | Y | Y | Y | Y |
Band Combination | Amplitude/Pixel | Frequency/Hz | Phase/Rad | Time Interval/ms |
---|---|---|---|---|
B1-B2 | 0.4941 | 0.6567 | 1.6854 | 121.6 |
B2-B3 | 0.3830 | 0.6566 | 2.1558 | 102.4 |
B1-B3 | 0.8045 | 0.6570 | 1.8928 | 224.0 |
Band | Max/Pixel | RMSE |
---|---|---|
B1-B2 | 0.0758 | 4.1023 × 10−4 |
B2-B3 | 0.0557 | 2.0165 × 10−4 |
B1-B3 | 0.1003 | 0.0011 |
Estimated Values | Reference Values | ||||||
---|---|---|---|---|---|---|---|
Band Combination | Amplitude /Pixel | Frequency /Hz | Band | Amplitude /Pixel | Frequency /Hz | Relative Error (Amplitude) | Relative Error (Frequency) |
B1-B2 | 0.9911 | 0.6567 | B1 | 0.9406 | 0.6552 | 5.37% | 0.23% |
B2-B3 | 0.9096 | 0.6566 | B2 | 0.9145 | 0.6573 | 0.54% | 0.11% |
B1-B3 | 0.9383 | 0.6570 | B3 | 0.9022 | 0.6558 | 4.00% | 0.18% |
average | 0.9463 | 0.6568 | average | 0.9191 | 0.6561 | 2.96% | 0.11% |
Band | Max/Pixel | RMSE |
---|---|---|
B1 | 0.3265 | 0.0234 |
B2 | 0.3251 | 0.0248 |
B3 | 0.2232 | 0.0122 |
Band | Max/Pixel | RMSE |
---|---|---|
CCD1-CCD2 | 1.1391 | 0.1827 |
CCD1 | 1.0861 | 0.3128 |
Estimated Values | Reference Values | ||||||
---|---|---|---|---|---|---|---|
CCD Combination | Amplitude /Pixel | Frequency /Hz | CCD | Amplitude /Pixel | Frequency /Hz | Relative Error (Amplitude) | Relative Error (Frequency) |
CCD1-CCD2 | 3.5643 | 0.3112 | CCD1 | 3.2863 | 0.3123 | 8.46% | 0.35% |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Che, C.; Zhu, Y.; Wang, M. Satellite Jitter Estimation and Validation Using Parallax Images. Sensors 2017, 17, 83. https://doi.org/10.3390/s17010083
Pan J, Che C, Zhu Y, Wang M. Satellite Jitter Estimation and Validation Using Parallax Images. Sensors. 2017; 17(1):83. https://doi.org/10.3390/s17010083
Chicago/Turabian StylePan, Jun, Chengbang Che, Ying Zhu, and Mi Wang. 2017. "Satellite Jitter Estimation and Validation Using Parallax Images" Sensors 17, no. 1: 83. https://doi.org/10.3390/s17010083