Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design
<p>Images <math display="inline"> <semantics> <mrow> <mn>256</mn> <mo>×</mo> <mn>256</mn> </mrow> </semantics> </math> pixels, 8.0 bpp. (<b>a</b>) Lena; (<b>b</b>) Barbara; (<b>c</b>) Elaine; (<b>d</b>) Boat; (<b>e</b>) Clock; (<b>f</b>) Goldhill; (<b>g</b>) Peppers; (<b>h</b>) Mandrill; (<b>i</b>) Tiffany.</p> "> Figure 1 Cont.
<p>Images <math display="inline"> <semantics> <mrow> <mn>256</mn> <mo>×</mo> <mn>256</mn> </mrow> </semantics> </math> pixels, 8.0 bpp. (<b>a</b>) Lena; (<b>b</b>) Barbara; (<b>c</b>) Elaine; (<b>d</b>) Boat; (<b>e</b>) Clock; (<b>f</b>) Goldhill; (<b>g</b>) Peppers; (<b>h</b>) Mandrill; (<b>i</b>) Tiffany.</p> "> Figure 2
<p>Image encoding using DWT.</p> "> Figure 3
<p>Images obtained from the inverse discrete wavelet transform with the exclusion of subbands <span class="html-italic">S</span><sub>11</sub>, <span class="html-italic">S</span><sub>12</sub> and <span class="html-italic">S</span><sub>13</sub>. (<b>a</b>) Lena PSNR = 30.05 dB; (<b>b</b>) Barbara PSNR = 25.54 dB; (<b>c</b>) Elaine PSNR = 31.88 dB; (<b>d</b>) Boat PSNR = 26.07 dB; (<b>e</b>) Clock PSNR = 29.02 dB; (<b>f</b>) Goldhill PSNR = 27.77 dB; (<b>g</b>) Peppers PSNR = 30.74 dB; (<b>h</b>) Mandrill PSNR = 24.93 dB; (<b>i</b>) Tiffany PSNR = 31.69 dB.</p> "> Figure 4
<p>Images Lena: (<b>a</b>) Original; (<b>b</b>) Reconstructed using spatial domain VQ with 0.3125 bpp (PSNR = 25.62 dB and SSIM = 0.7211); (<b>c</b>) Reconstructed using DWT VQ with 0.3125 bpp (PSNR = 29.35 dB and SSIM = 0.8367). Codebooks were designed with training set P-M-T by MFKM2-ENNS.</p> "> Figure 5
<p>Images Goldhill: (<b>a</b>) Original; (<b>b</b>) Reconstructed using spatial domain VQ with 0.3125 bpp (PSNR = 25.71 dB and SSIM = 0.6391); (<b>c</b>) Reconstructed using DWT VQ with 0.3125 bpp (PSNR = 26.81 dB and SSIM = 0.7640). Codebooks were designed with training set P-M-T by MFKM2-ENNS.</p> ">
Abstract
:1. Introduction
2. Codebook Desing Techniques
3. Accelerating Fuzzy K-Means Family Algorithm
4. Nearest Neighbor Search Techniques for Accelerating the Codebook Design
Algorithm 1. Partitioning step of the conventional FKM2 algorithm in crisp mode |
For
Codebook update step of the FKM2 algorithm: Calculate Codebook update with , in which is the codevector at the -th iteration |
Algorithm 2. Partitioning step of the MFKM2 algorithm in crisp mode |
For
Codebook update step of the MFKM2 algorithm: Calculate Codebook update with |
Algorithm 3. Partitioning step of the MFKM2 algorithm in crisp mode with the use of ENNS |
(Calculate off-line the mean of each input vector) Calculate the mean of each codevector and order the means in ascending order For
Calculate Codebook update with |
5. Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gersho, A.; Gray, R.M. Vector Quantization and Signal Compression; Kluwer Academic Publishers: Boston, MA, USA, 1992. [Google Scholar]
- Gray, R.M. Vector Quantization. IEEE ASSP Mag. 1984, 1, 4–29. [Google Scholar] [CrossRef]
- Ma, Z.; Taghia, J.; Kleijn, W.B.; Guo, J. Line Spectral Frequencies Modeling by a Mixture of Von Mises-Fisher Distributions. Signal Proc. 2015, 114, 219–224. [Google Scholar] [CrossRef]
- Paliwal, K.K.; Atal, B.S. Efficient Vector Quantization of LPC Parameters at 24 Bits/Frame. IEEE Trans. Audio Speech Lang. Proc. 1993, 1, 3–14. [Google Scholar] [CrossRef]
- Yahampath, P.; Rondeau, P. Multiple-Description Predictive-Vector Quantization with Applications to Low Bit-Rate Speech Coding Over Networks. IEEE Trans. Audio Speech Lang. Proc. 2007, 15, 749–755. [Google Scholar] [CrossRef]
- Akhtarkavan, E.; Salleh, M.F.M. Multiple Descriptions Coinciding Lattice Vector Quantizer for Wavelet Image Coding. IEEE Trans. Image Proc. 2012, 21, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, D.; Tsekouras, G.E.; Tsimikas, J. Fuzzy Vector Quantization for Image Compression Based on Competitive Agglomeration and a Novel Codeword Migration Strategy. Eng. Appl. Artif. Intell. 2012, 25, 1212–1225. [Google Scholar] [CrossRef]
- Wen, J.; Ma, C.; Zhao, J. FIVQ Algorithm for Interference Hyper-Spectral Image Compression. Opt. Commun. 2014, 322, 97–104. [Google Scholar] [CrossRef]
- Hu, Y.C.; Chen, W.L.; Lo, C.C.; Wu, C.M.; Wen, C.H. Efficient VQ-Based Image Coding Scheme Using Inverse Function and Lossless Index Coding. Signal Proc. 2013, 93, 2432–2439. [Google Scholar] [CrossRef]
- Hanilçi, C.; Ertas, F. Investigation of the Effect of Data Duration and Speaker Gender on Text-Independent Speaker Recognition. Comput. Electr. Eng. 2013, 39, 441–452. [Google Scholar] [CrossRef]
- Madeiro, F.; Fechine, J.M.; Lopes, W.T.A.; Aguiar Neto, B.G.; Alencar, M.S. Identificação Vocal por Frequência Fundamental, QV e HMMS. In Em-TOM-Ação: A Prosódia em Perspectiva, 1st ed.; Aguiar, M.A.M., Madeiro, F., Eds.; Editora Universitária da UFPE: Recife, Brazil, 2007; pp. 91–120. [Google Scholar]
- Qin, C.; Chang, C.-C. A Novel Joint Data-Hiding and Compression Scheme Based on SMVQ and Image Inpainting. IEEE Trans. Image Proc. 2014, 23, 969–978. [Google Scholar]
- Chang, C.-C.; Wu, W.-C. Hiding Secret Data Adaptively in Vector Quantisation Index Tables. IEEE Proc. Vis. Image Signal Proc. 2006, 153, 589–597. [Google Scholar] [CrossRef]
- Qin, C.; Hu, Y.-C. Reversible Data Hiding in VQ Index Table with Lossless Coding and Adaptive Switching Mechanism. Signal Proc. 2016, 129, 48–55. [Google Scholar] [CrossRef]
- Chang, C.C.; Nguyen, T.S.; Lin, C.C. A Reversible Compression Code Hiding Using SOC and SMVQ Indices. Inf. Sci. 2015, 300, 85–99. [Google Scholar] [CrossRef]
- Tu, T.Y.; Wang, C.H. Reversible Data Hiding with High Payload Based on Referred Frequency for VQ Compressed Codes Index. Signal Proc. 2015, 108, 278–287. [Google Scholar] [CrossRef]
- Kieu, T.D.; Ramroach, S. A Reversible Steganographic Scheme for VQ Indices Based on Joint Neighboring Coding. Exp. Syst. Appl. 2015, 42, 713–722. [Google Scholar] [CrossRef]
- Hu, H.T.; Hsu, L.Y.; Chou, H.H. Variable-Dimensional Vector Modulation for Perceptual-Based DWT Blind Audio Watermarking with Adjustable Payload Capacity. Digit. Signal Proc. 2014, 31, 115–123. [Google Scholar] [CrossRef]
- Vieira, R.T.; Brunet, N.; Costa, S.C.; Correia, S.; Aguiar Neto, B.G.; Fechine, J.M. Combining Entropy Measurements and Cepstral Analysis for Pathological Voice Assessment. J. Med. Biol. Eng. 2012, 32, 429–435. [Google Scholar] [CrossRef]
- Linde, Y.; Buzo, A.; Gray, R.M. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1950, 28, 84–95. [Google Scholar] [CrossRef]
- Tsolakis, D.; Tsekouras, G.E.; Niros, A.D.; Rigos, A. On the Systematic Development of Fast Fuzzy Vector Quantization for Grayscale Image Compression. Inf. Sci. 2012, 36, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Hunga, W.-L.; Chen, D.-H.; Yang, M.-S. Suppressed Fuzzy-Soft Learning Vector Quantization for MRI Segmentation. Inf. Sci. 2011, 52, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, A.K.; Ahalt, S.C.; Melton, D.E.; Chen, P. Neural Networks for Vector Quantization of Speech and Images. IEEE J. Sel. Areas Commun. 1990, 8, 1449–1457. [Google Scholar] [CrossRef]
- Azevedo, C.R.B.; Azevedo, F.E.A.G.; Lopes, W.T.A.; Madeiro, F. Terrain-Based Memetic Algorithms to Vector Quantization Design. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2008); Krasnogor, N., Ed.; DEU: Berlin, Germany, 2009; Volume 236, pp. 197–211. [Google Scholar]
- Pan, J.S.; Mclnnes, F.R.; Jack, M.A. VQ Codebook Design Using Genetic Algorithms. Electron. Lett. 1995, 31, 1418–1419. [Google Scholar] [CrossRef]
- Horng, M.-H. Vector Quantization Using the Firefly Algorithm for Image Compression. Inf. Sci. 2012, 39, 1078–1091. [Google Scholar] [CrossRef]
- Horng, M.-H.; Jiang, T.-W. Image Vector Quantization Algorithm via Honey Bee Mating Optimization. Inf. Sci. 2012, 38, 1382–1392. [Google Scholar] [CrossRef]
- Karayiannis, N.B.; Bezdek, J.C. An Integrated Approach to Fuzzy Learning Vector Quantization and Fuzzy C-Means Clustering. IEEE Trans. Fuzzy Syst. 1997, 5, 622–628. [Google Scholar] [CrossRef]
- Karayiannis, N.B.; Pai, P.I. Fuzzy Vector Quantization Algorithms and Their Application in Image Compression. IEEE Trans. Image Proc. 1995, 4, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Tsao, E.C.K.; Bezdek, J.C.; Pal, N.R. Fuzzy Kohonen Clustering Networks. Pattern Recognit. 1994, 27, 757–764. [Google Scholar] [CrossRef]
- Tsekouras, G.E.; Mamalis, A.; Anagnostopoulos, C.; Gavalas, D.; Economou, D. Improved Batch Fuzzy Learning Vector Quantization for Image Compression. Inf. Sci. 2008, 178, 3895–3907. [Google Scholar] [CrossRef]
- Triantafilisa, J.; Gibbsb, I.; Earla, N. Digital Soil Pattern Recognition in the Lower Namoi Valley Using Numerical Clustering of Gamma-Ray Spectrometry Data. Geoderma 2013, 192, 407–421. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Fangi, G. Comparative Cluster Analysis to Localize Emergencies in Archaeology. J. Cult. Herit. 2009, 10, e10–e19. [Google Scholar] [CrossRef]
- Chen, G.; Meng, X.; Wang, Y.; Zhang, Y.; Tian, P.; Yang, H. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization. Sensors 2015, 15, 24595–24614. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Montes, H.; Salinas, C.; Sarria, J.; Armada, M. Combination of RGB and Multispectral Imagery for Discrimination of Cabernet Sauvignon Grapevine Elements. Sensors 2013, 13, 7838–7859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, X.; Li, X.; Chen, Y.-J.; Zhen, W.; Chang, J.; Zheng, C.; Liu, Z. White Blood Cell Segmentation by Color-Space-Based K-Means Clustering. Sensors 2014, 14, 16128–16147. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, W.-T.; Tan, T.-H.; Chang, C.-C.; Chang, Y.-J. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds. Sensors 2015, 15, 13132–13158. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Cao, W.; Zhu, Y.; Zhang, J.; Pang, F.; Ni, J. The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil. Sensors 2015, 15, 28314–28339. [Google Scholar] [CrossRef] [PubMed]
- Adhikaria, S.K.; Singb, J.K.; Basub, D.K.; Nasipurib, M. Conditional Spatial Fuzzy C-Means Clustering Algorithm for Segmentation of MRI Images. Appl. Soft Comput. 2015, 34, 758–769. [Google Scholar] [CrossRef]
- Mekhmoukh, A.; Mokrani, K. Improved Fuzzy C-Means Based Particle Swarm Optimization (PSO) Initialization and Outlier Rejection with Level Set Methods for MR Brain Image Segmentation. Comput. Methods Prog. Biomed. 2015, 122, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, T.; Sidoroff, I.; Tuononen, M.; Fränti, P. Comparison of Clustering Methods: A Case Study of Text-Independent Speaker Modeling. Pattern Recognit. Lett. 2011, 32, 1604–1617. [Google Scholar] [CrossRef]
- Alkhalaf, S.; Alfarraj, O.; Hemeida, A.M. Fuzzy-VQ Image Compression based Hybrid PSOGSA Optimization Algorithm. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–6.
- Bhattacharyya, P.; Mitra, A.; Chatterjee, A. Vector Quantization Based Image Compression Using Generalized Improved Fuzzy Clustering. In Proceedings of the International Conference on Control, Instrumentation, Energy and Communication (CIEC14), Kolkata, India, 31 January–2 February 2014; pp. 662–666.
- Guan, L.; Kamel, M. Equal-Average Hyperplane Partitioning Method for Vector Quantization of Image Data. Pattern Recognit. Lett. 1992, 13, 693–699. [Google Scholar] [CrossRef]
- Ra, S.W.; Kim, J.K. A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm for Image Vector Quantization. IEEE Trans. Circuits Syst. II 1993, 40, 576–579. [Google Scholar] [CrossRef]
- Lee, D.; Baek, S.; Sung, K. Modified K-Means Algorithm for Vector Quantizer Design. IEEE Signal Proc. Lett. 1997, 4, 2–4. [Google Scholar]
- Paliwal, K.K.; Ramasubramanian, V. Comments on Modified K-Means Algorithm for Vector Quantizer Design. IEEE Trans. Image Proc. 2000, 9, 1964–1967. [Google Scholar] [CrossRef] [PubMed]
- Bei, C.D.; Gray, R.M. An Improvement of the Minimum Distortion Enconding Algorithm for Vector Quantization. IEEE Trans. Commun. 1985, 33, 1132–1133. [Google Scholar]
- Chu, S.C.; Lu, Z.M.; Pan, J.S. Hadamard Transform Based Fast Codeword Search Algorithm for High-Dimensional VQ Enconding. Inf. Sci. 2007, 177, 734–746. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wu, W.-C. Fast Planar-Oriented Ripple Search Algorithm for Hyperspace VQ Codebook. IEEE Trans. Image Proc. 2007, 16, 1538–1547. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Proc. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Averbuch, A.; Lazar, D.; Israeli, M. Image Compression Using Wavelet Transform and Multiresolution Decomposition. IEEE Trans. Image Proc. 1996, 5, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Int. 1996, 5, 4–15. [Google Scholar]
KM | K-means |
FKM | Fuzzy K-means |
MFKM | Modified Fuzzy K-means (accelerated version with scale ) |
FKM1 | Fuzzy K-means Family 1 |
MFKM1 | Modified Fuzzy K-means Family 1 (accelerated version with scale ) |
FKM1-PDS | Fuzzy K-means Family 1 with Partial Distortion Search in the crisp phase |
MFKM1-PDS | Modified Fuzzy K-means Family 1 (accelerated version with scale ) with Partial Distortion Search in the crisp phase |
FKM1-ENNS | Fuzzy K-means Family 1 with Equal-Average Nearest Neighbor Search in the crisp phase |
MFKM1-ENNS | Modified Fuzzy K-means Family 1 (accelerated version with scale ) with Equal-Average Nearest Neighbor Search in the crisp phase |
FKM2 | Fuzzy K-means Family 2 |
MFKM2 | Modified Fuzzy K-means Family 2 (accelerated version with scale ) |
FKM2-PDS | Fuzzy K-means Family 2 with Partial Distortion Search in the crisp phase |
MFKM2-PDS | Modified Fuzzy K-means Family 2 (accelerated version with scale ) with Partial Distortion Search in the crisp phase |
FKM2-ENNS | Fuzzy K-means Family 2 with Equal-Average Nearest Neighbor Search in the crisp phase |
MFKM2-ENNS | Modified Fuzzy K-means Family 2 (accelerated version with scale ) with Equal-Average Nearest Neighbor Search in the crisp phase |
Algorithm | Lena | Barbara | Elaine | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 26.61 | 17.20 | 0.16 | 24.76 | 15.20 | 0.12 | 27.75 | 18.15 | 0.16 |
FKM | 26.57 | 19.65 | 1.53 | 24.71 | 16.00 | 1.11 | 27.70 | 19.75 | 1.65 |
MFKM | 26.61 | 14.75 | 1.12 | 24.72 | 12.30 | 0.86 | 27.72 | 15.80 | 1.31 |
FKM1 | 26.60 | 22.35 | 0.35 | 24.77 | 19.00 | 0.38 | 27.77 | 24.35 | 0.38 |
MFKM1 | 26.62 | 18.25 | 0.28 | 24.79 | 16.05 | 0.31 | 27.77 | 18.55 | 0.30 |
FKM1-PDS | 26.60 | 22.35 | 0.33 | 24.77 | 19.00 | 0.34 | 27.77 | 24.35 | 0.34 |
MFKM1-PDS | 26.62 | 18.25 | 0.26 | 24.79 | 16.05 | 0.28 | 27.77 | 18.55 | 0.29 |
FKM1-ENNS | 26.60 | 22.35 | 0.26 | 24.77 | 19.00 | 0.28 | 27.77 | 24.35 | 0.27 |
MFKM1-ENNS | 26.62 | 18.25 | 0.22 | 24.79 | 16.05 | 0.25 | 27.77 | 18.55 | 0.25 |
FKM2 | 26.60 | 15.35 | 0.39 | 24.77 | 14.25 | 0.30 | 27.77 | 18.50 | 0.40 |
MFKM2 | 26.63 | 12.70 | 0.35 | 24.78 | 11.75 | 0.24 | 27.80 | 14.40 | 0.33 |
FKM2-PDS | 26.60 | 15.35 | 0.35 | 24.77 | 14.25 | 0.27 | 27.77 | 18.45 | 0.37 |
MFKM2-PDS | 26.63 | 12.70 | 0.33 | 24.78 | 11.75 | 0.22 | 27.80 | 14.40 | 0.30 |
FKM2-ENNS | 26.60 | 15.35 | 0.33 | 24.77 | 14.25 | 0.24 | 27.77 | 18.50 | 0.29 |
MFKM2-ENNS | 26.63 | 12.70 | 0.30 | 24.78 | 11.75 | 0.20 | 27.80 | 14.40 | 0.26 |
Algorithm | Boat | Clock | Goldhill | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 24.92 | 18.95 | 0.20 | 26.16 | 26.10 | 0.32 | 26.66 | 17.00 | 0.34 |
FKM | 24.84 | 21.20 | 1.64 | 26.23 | 41.00 | 1.78 | 26.67 | 18.60 | 3.05 |
MFKM | 24.87 | 16.20 | 0.98 | 26.28 | 35.55 | 1.08 | 26.70 | 16.30 | 2.57 |
FKM1 | 24.91 | 25.75 | 0.42 | 26.19 | 33.40 | 0.55 | 26.67 | 22.25 | 0.46 |
MFKM1 | 24.93 | 19.80 | 0.33 | 26.25 | 25.80 | 0.45 | 26.68 | 18.85 | 0.36 |
FKM1-PDS | 24.91 | 25.75 | 0.40 | 26.19 | 33.40 | 0.50 | 26.67 | 22.25 | 0.43 |
MFKM1-PDS | 24.93 | 19.80 | 0.31 | 26.25 | 25.80 | 0.41 | 26.68 | 18.85 | 0.32 |
FKM1-ENNS | 24.91 | 25.75 | 0.32 | 26.19 | 33.40 | 0.39 | 26.67 | 22.25 | 0.35 |
MFKM1-ENNS | 24.93 | 19.80 | 0.27 | 26.25 | 25.80 | 0.34 | 26.68 | 18.85 | 0.30 |
FKM2 | 24.91 | 18.90 | 0.43 | 26.26 | 23.30 | 0.46 | 26.67 | 16.20 | 0.63 |
MFKM2 | 24.93 | 15.20 | 0.37 | 26.32 | 20.50 | 0.40 | 26.70 | 13.55 | 0.55 |
FKM2-PDS | 24.91 | 18.90 | 0.41 | 26.26 | 23.30 | 0.43 | 26.67 | 16.20 | 0.58 |
MFKM2-PDS | 24.93 | 15.20 | 0.35 | 26.32 | 20.50 | 0.39 | 26.70 | 13.55 | 0.51 |
FKM2-ENNS | 24.91 | 18.90 | 0.36 | 26.26 | 23.30 | 0.40 | 26.67 | 16.20 | 0.47 |
MFKM2-ENNS | 24.93 | 15.20 | 0.32 | 26.32 | 20.50 | 0.34 | 26.70 | 13.55 | 0.46 |
Algorithm | Lena | Barbara | Elaine | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 27.74 | 17.80 | 0.32 | 25.68 | 16.25 | 0.25 | 29.06 | 18.00 | 0.24 |
FKM | 27.69 | 22.85 | 5.81 | 25.64 | 21.15 | 4.03 | 29.09 | 24.05 | 4.91 |
MFKM | 27.73 | 17.90 | 4.51 | 25.64 | 15.40 | 3.31 | 29.13 | 18.60 | 3.98 |
FKM1 | 27.67 | 23.15 | 0.61 | 25.74 | 20.65 | 0.55 | 29.01 | 23.55 | 0.62 |
MFKM1 | 27.75 | 19.10 | 0.48 | 25.77 | 17.95 | 0.48 | 29.07 | 19.90 | 0.53 |
FKM1-PDS | 27.67 | 23.15 | 0.53 | 25.74 | 20.65 | 0.51 | 29.01 | 23.55 | 0.54 |
MFKM1-PDS | 27.75 | 19.10 | 0.46 | 25.77 | 17.95 | 0.44 | 29.07 | 19.90 | 0.47 |
FKM1-ENNS | 27.67 | 23.15 | 0.39 | 25.74 | 20.65 | 0.43 | 29.01 | 23.55 | 0.46 |
MFKM1-ENNS | 27.75 | 19.10 | 0.35 | 25.77 | 17.95 | 0.36 | 29.07 | 19.90 | 0.40 |
FKM2 | 27.80 | 14.50 | 0.81 | 25.73 | 15.00 | 0.71 | 29.05 | 16.45 | 0.81 |
MFKM2 | 27.85 | 12.85 | 0.71 | 25.75 | 12.85 | 0.61 | 29.10 | 13.70 | 0.75 |
FKM2-PDS | 27.80 | 14.50 | 0.70 | 25.73 | 15.00 | 0.62 | 29.05 | 16.45 | 0.74 |
MFKM2-PDS | 27.85 | 12.85 | 0.67 | 25.75 | 12.85 | 0.55 | 29.10 | 13.70 | 0.68 |
FKM2-ENNS | 27.80 | 14.50 | 0.62 | 25.73 | 14.95 | 0.57 | 29.05 | 16.40 | 0.62 |
MFKM2-ENNS | 27.85 | 12.85 | 0.60 | 25.75 | 12.85 | 0.52 | 29.10 | 13.70 | 0.60 |
Algorithm | Boat | Clock | Goldhill | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 25.90 | 18.45 | 0.46 | 27.17 | 22.05 | 0.62 | 27.69 | 16.15 | 0.36 |
FKM | 25.84 | 23.30 | 6.31 | 27.41 | 42.70 | 8.11 | 27.68 | 19.55 | 5.81 |
MFKM | 25.85 | 16.05 | 4.61 | 27.46 | 33.85 | 5.53 | 27.70 | 15.20 | 4.51 |
FKM1 | 25.85 | 24.35 | 0.73 | 27.08 | 25.10 | 1.05 | 27.69 | 21.80 | 0.64 |
MFKM1 | 25.91 | 18.90 | 0.62 | 27.16 | 20.10 | 0.80 | 27.71 | 18.05 | 0.53 |
FKM1-PDS | 25.85 | 24.35 | 0.68 | 27.08 | 25.65 | 0.88 | 27.69 | 21.85 | 0.60 |
MFKM1-PDS | 25.91 | 18.90 | 0.56 | 27.16 | 20.10 | 0.70 | 27.71 | 18.05 | 0.49 |
FKM1-ENNS | 25.85 | 24.35 | 0.55 | 27.08 | 25.10 | 0.68 | 27.69 | 21.80 | 0.48 |
MFKM1-ENNS | 25.91 | 18.90 | 0.44 | 27.16 | 20.10 | 0.52 | 27.71 | 18.05 | 0.43 |
FKM2 | 25.92 | 17.50 | 0.94 | 27.32 | 18.90 | 1.09 | 27.70 | 15.60 | 1.04 |
MFKM2 | 25.96 | 13.80 | 0.85 | 27.40 | 16.10 | 1.01 | 27.73 | 13.10 | 0.89 |
FKM2-PDS | 25.92 | 17.45 | 0.87 | 27.32 | 18.90 | 1.03 | 27.70 | 15.55 | 0.96 |
MFKM2-PDS | 25.96 | 13.80 | 0.83 | 27.40 | 16.10 | 0.98 | 27.73 | 13.10 | 0.93 |
FKM2-ENNS | 25.92 | 17.50 | 0.84 | 27.32 | 18.90 | 0.94 | 27.70 | 15.60 | 0.83 |
MFKM2-ENNS | 25.96 | 13.80 | 0.70 | 27.40 | 16.10 | 0.92 | 27.73 | 13.10 | 0.75 |
Algorithm | Lena | Barbara | Elaine | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 28.83 | 18.10 | 0.51 | 26.68 | 14.95 | 0.45 | 30.27 | 16.30 | 0.51 |
FKM | 28.91 | 27.60 | 22.31 | 26.61 | 20.35 | 13.45 | 30.40 | 26.15 | 18.47 |
MFKM | 28.95 | 21.25 | 16.32 | 26.64 | 16.70 | 11.57 | 30.44 | 19.50 | 13.11 |
FKM1 | 28.73 | 22.20 | 1.10 | 26.74 | 20.80 | 1.06 | 30.17 | 23.10 | 1.13 |
MFKM1 | 28.92 | 17.55 | 0.91 | 26.81 | 16.05 | 0.85 | 30.30 | 18.55 | 0.91 |
FKM1-PDS | 28.73 | 22.25 | 0.96 | 26.74 | 20.90 | 0.96 | 30.17 | 23.10 | 1.05 |
MFKM1-PDS | 28.92 | 17.55 | 0.81 | 26.81 | 15.95 | 0.75 | 30.30 | 18.55 | 0.82 |
FKM1-ENNS | 28.73 | 22.20 | 0.79 | 26.74 | 20.80 | 0.77 | 30.17 | 23.10 | 0.77 |
MFKM1-ENNS | 28.92 | 17.55 | 0.68 | 26.81 | 16.05 | 0.63 | 30.30 | 18.55 | 0.68 |
FKM2 | 28.97 | 14.45 | 1.97 | 26.74 | 14.30 | 1.60 | 30.34 | 14.35 | 1.83 |
MFKM2 | 29.07 | 12.55 | 1.76 | 26.79 | 12.85 | 1.54 | 30.45 | 12.70 | 1.73 |
FKM2-PDS | 28.97 | 14.45 | 1.76 | 26.74 | 14.30 | 1.55 | 30.34 | 14.35 | 1.72 |
MFKM2-PDS | 29.07 | 12.55 | 1.65 | 26.79 | 12.85 | 1.48 | 30.45 | 12.70 | 1.66 |
FKM2-ENNS | 28.97 | 14.45 | 1.60 | 26.74 | 14.30 | 1.47 | 30.34 | 14.30 | 1.59 |
MFKM2-ENNS | 29.07 | 12.55 | 1.56 | 26.79 | 12.85 | 1.39 | 30.45 | 12.70 | 1.57 |
Algorithm | Boat | Clock | Goldhill | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 26.90 | 17.80 | 0.53 | 28.28 | 16.60 | 0.65 | 28.67 | 15.05 | 0.41 |
FKM | 26.91 | 26.85 | 25.38 | 28.48 | 31.40 | 39.61 | 28.66 | 20.30 | 13.51 |
MFKM | 26.94 | 20.70 | 22.56 | 28.55 | 26.05 | 36.47 | 28.69 | 15.35 | 11.02 |
FKM1 | 26.59 | 24.15 | 1.22 | 28.04 | 20.50 | 1.36 | 28.69 | 20.60 | 1.15 |
MFKM1 | 26.70 | 17.20 | 0.98 | 28.24 | 17.50 | 1.13 | 28.77 | 16.30 | 0.99 |
FKM1-PDS | 26.59 | 24.15 | 1.17 | 28.04 | 20.35 | 1.26 | 28.69 | 20.75 | 1.02 |
MFKM1-PDS | 26.70 | 17.20 | 0.93 | 28.24 | 17.50 | 1.03 | 28.77 | 16.30 | 0.95 |
FKM1-ENNS | 26.59 | 24.15 | 0.90 | 28.04 | 20.50 | 0.85 | 28.69 | 20.60 | 0.90 |
MFKM1-ENNS | 26.70 | 17.20 | 0.72 | 28.24 | 17.50 | 0.73 | 28.77 | 16.30 | 0.83 |
FKM2 | 26.97 | 16.25 | 2.04 | 28.28 | 14.40 | 2.56 | 28.69 | 14.30 | 1.80 |
MFKM2 | 27.07 | 14.15 | 1.85 | 28.40 | 13.15 | 2.48 | 28.75 | 12.95 | 1.75 |
FKM2-PDS | 26.97 | 16.25 | 1.97 | 28.28 | 14.40 | 2.47 | 28.69 | 14.30 | 1.76 |
MFKM2-PDS | 27.07 | 14.15 | 1.76 | 28.40 | 13.15 | 2.45 | 28.75 | 12.95 | 1.70 |
FKM2-ENNS | 26.97 | 16.25 | 1.77 | 28.28 | 14.40 | 2.32 | 28.69 | 14.35 | 1.64 |
MFKM2-ENNS | 27.07 | 14.15 | 1.68 | 28.40 | 13.15 | 2.30 | 28.75 | 12.95 | 1.52 |
Algorithm | Lena | Barbara | Elaine | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 29.89 | 14.70 | 0.62 | 27.76 | 13.60 | 0.58 | 31.46 | 14.40 | 0.66 |
FKM | 30.21 | 38.20 | 90.19 | 27.74 | 25.25 | 66.32 | 31.80 | 31.65 | 79.91 |
MFKM | 30.24 | 27.10 | 73.28 | 27.76 | 20.00 | 57.34 | 31.87 | 24.30 | 75.85 |
FKM1 | 29.74 | 21.80 | 1.99 | 27.78 | 18.40 | 1.89 | 31.16 | 20.65 | 1.97 |
MFKM1 | 30.13 | 16.20 | 1.78 | 27.97 | 15.15 | 1.71 | 31.53 | 17.10 | 1.75 |
FKM1-PDS | 29.74 | 21.80 | 1.78 | 27.78 | 18.40 | 1.74 | 31.16 | 20.65 | 1.73 |
MFKM1-PDS | 30.13 | 16.20 | 1.56 | 27.97 | 15.15 | 1.59 | 31.53 | 17.10 | 1.52 |
FKM1-ENNS | 29.74 | 21.75 | 1.40 | 27.78 | 18.50 | 1.41 | 31.16 | 20.75 | 1.46 |
MFKM1-ENNS | 30.13 | 16.20 | 1.36 | 27.97 | 15.15 | 1.40 | 31.53 | 17.10 | 1.38 |
FKM2 | 30.23 | 14.10 | 5.04 | 27.88 | 13.35 | 5.10 | 31.65 | 13.10 | 5.32 |
MFKM2 | 30.43 | 12.75 | 5.17 | 28.00 | 12.05 | 5.04 | 31.77 | 12.25 | 5.79 |
FKM2-PDS | 30.23 | 14.10 | 4.92 | 27.88 | 13.35 | 4.81 | 31.65 | 13.10 | 5.16 |
MFKM2-PDS | 30.43 | 12.75 | 5.22 | 28.00 | 12.05 | 4.65 | 31.77 | 12.25 | 5.42 |
FKM2-ENNS | 30.23 | 14.10 | 4.63 | 27.88 | 13.30 | 4.65 | 31.65 | 13.10 | 4.92 |
MFKM2-ENNS | 30.43 | 12.75 | 4.94 | 28.00 | 12.05 | 4.58 | 31.77 | 12.25 | 5.37 |
Algorithm | Boat | Clock | Goldhill | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | Iter | Time | PSNR | Iter | Time | PSNR | Iter | Time | |
KM | 27.91 | 13.30 | 0.63 | 29.47 | 13.70 | 0.65 | 29.73 | 13.30 | 0.61 |
FKM | 28.04 | 32.05 | 84.26 | 29.82 | 35.65 | 81.15 | 29.83 | 24.70 | 63.14 |
MFKM | 28.08 | 23.65 | 70.18 | 29.85 | 26.00 | 75.34 | 29.86 | 18.50 | 54.12 |
FKM1 | 27.57 | 24.05 | 2.44 | 29.09 | 19.75 | 1.81 | 29.68 | 19.30 | 2.12 |
MFKM1 | 27.87 | 17.55 | 1.93 | 29.41 | 16.10 | 1.59 | 29.90 | 15.80 | 1.88 |
FKM1-PDS | 27.57 | 24.05 | 2.25 | 29.09 | 19.75 | 1.64 | 29.68 | 19.30 | 1.96 |
MFKM1-PDS | 27.87 | 17.55 | 1.79 | 29.41 | 16.10 | 1.42 | 29.90 | 15.80 | 1.76 |
FKM1-ENNS | 27.57 | 23.95 | 1.77 | 29.09 | 19.70 | 1.29 | 29.68 | 19.35 | 1.51 |
MFKM1-ENNS | 27.87 | 17.55 | 1.43 | 29.41 | 16.10 | 1.12 | 29.90 | 15.80 | 1.42 |
FKM2 | 28.05 | 13.40 | 5.29 | 29.56 | 12.75 | 5.10 | 29.80 | 12.10 | 5.12 |
MFKM2 | 28.22 | 11.85 | 5.53 | 29.75 | 12.40 | 5.35 | 29.92 | 11.80 | 5.62 |
FKM2-PDS | 28.05 | 13.40 | 5.09 | 29.56 | 12.75 | 4.82 | 29.80 | 12.10 | 5.05 |
MFKM2-PDS | 28.22 | 11.85 | 5.15 | 29.75 | 12.40 | 5.12 | 29.92 | 11.80 | 5.34 |
FKM2-ENNS | 28.05 | 13.40 | 4.76 | 29.56 | 12.75 | 4.52 | 29.80 | 12.10 | 4.83 |
MFKM2-ENNS | 28.22 | 11.85 | 5.06 | 29.75 | 12.40 | 4.50 | 29.92 | 11.80 | 5.21 |
Algorithm | SSIM | ||||||
---|---|---|---|---|---|---|---|
Lena | Barbara | Elaine | Boat | Clock | Goldhill | P-M-T | |
KM | 0.7790 | 0.6800 | 0.7637 | 0.7081 | 0.8373 | 0.7078 | 0.7492 |
FKM | 0.7838 | 0.6809 | 0.7687 | 0.7118 | 0.8447 | 0.7105 | 0.7501 |
MFKM | 0.7840 | 0.6807 | 0.7688 | 0.7120 | 0.8457 | 0.7111 | 0.7496 |
FKM1 | 0.7816 | 0.6807 | 0.7678 | 0.7109 | 0.8381 | 0.7105 | 0.7481 |
MFKM1 | 0.7813 | 0.6813 | 0.7674 | 0.7095 | 0.8386 | 0.7110 | 0.7502 |
FKM1-PDS | 0.7816 | 0.6807 | 0.7678 | 0.7109 | 0.8381 | 0.7105 | 0.7481 |
MFKM1-PDS | 0.7813 | 0.6813 | 0.7674 | 0.7095 | 0.8386 | 0.7110 | 0.7502 |
FKM1-ENNS | 0.7816 | 0.6807 | 0.7678 | 0.7109 | 0.8381 | 0.7105 | 0.7481 |
MFKM1-ENNS | 0.7813 | 0.6813 | 0.7674 | 0.7095 | 0.8386 | 0.7110 | 0.7502 |
FKM2 | 0.7731 | 0.6787 | 0.7617 | 0.7083 | 0.8383 | 0.7083 | 0.7483 |
MFKM2 | 0.7736 | 0.6793 | 0.7622 | 0.7075 | 0.8395 | 0.7087 | 0.7490 |
FKM2-PDS | 0.7731 | 0.6787 | 0.7617 | 0.7083 | 0.8383 | 0.7083 | 0.7483 |
MFKM2-PDS | 0.7736 | 0.6793 | 0.7622 | 0.7075 | 0.8395 | 0.7087 | 0.7490 |
FKM2-ENNS | 0.7731 | 0.6787 | 0.7617 | 0.7083 | 0.8383 | 0.7083 | 0.7483 |
MFKM2-ENNS | 0.7736 | 0.6793 | 0.7622 | 0.7075 | 0.8395 | 0.7087 | 0.7490 |
Algorithm | SSIM | ||||||
---|---|---|---|---|---|---|---|
Lena | Barbara | Elaine | Boat | Clock | Goldhill | P-M-T | |
KM | 0.8225 | 0.7323 | 0.8094 | 0.7652 | 0.8667 | 0.7613 | 0.7897 |
FKM | 0.8260 | 0.7325 | 0.8136 | 0.7657 | 0.8749 | 0.7628 | 0.7902 |
MFKM | 0.8261 | 0.7318 | 0.8137 | 0.7653 | 0.8756 | 0.7631 | 0.7910 |
FKM1 | 0.8228 | 0.7355 | 0.8105 | 0.7655 | 0.8656 | 0.7629 | 0.7900 |
MFKM1 | 0.8224 | 0.7351 | 0.8096 | 0.7643 | 0.8661 | 0.7622 | 0.7902 |
FKM1-PDS | 0.8228 | 0.7355 | 0.8105 | 0.7655 | 0.8657 | 0.7629 | 0.7900 |
MFKM1-PDS | 0.8224 | 0.7351 | 0.8096 | 0.7643 | 0.8661 | 0.7622 | 0.7902 |
FKM1-ENNS | 0.8228 | 0.7355 | 0.8105 | 0.7655 | 0.8656 | 0.7629 | 0.7900 |
MFKM1-ENNS | 0.8224 | 0.7351 | 0.8096 | 0.7643 | 0.8661 | 0.7622 | 0.7902 |
FKM2 | 0.8177 | 0.7312 | 0.8031 | 0.7646 | 0.8680 | 0.7605 | 0.7900 |
MFKM2 | 0.8179 | 0.7316 | 0.8032 | 0.7645 | 0.8692 | 0.7610 | 0.7897 |
FKM2-PDS | 0.8177 | 0.7312 | 0.8031 | 0.7646 | 0.8680 | 0.7604 | 0.7900 |
MFKM2-PDS | 0.8179 | 0.7316 | 0.8032 | 0.7645 | 0.8692 | 0.7610 | 0.7897 |
FKM2-ENNS | 0.8177 | 0.7312 | 0.8031 | 0.7646 | 0.8680 | 0.7605 | 0.7900 |
MFKM2-ENNS | 0.8179 | 0.7316 | 0.8032 | 0.7645 | 0.8692 | 0.7610 | 0.7897 |
Algorithm | SSIM | ||||||
---|---|---|---|---|---|---|---|
Lena | Barbara | Elaine | Boat | Clock | Goldhill | P-M-T | |
KM | 0.8583 | 0.7863 | 0.8487 | 0.8141 | 0.8941 | 0.8050 | 0.8232 |
FKM | 0.8617 | 0.7864 | 0.8523 | 0.8143 | 0.9006 | 0.8066 | 0.8219 |
MFKM | 0.8616 | 0.7864 | 0.8523 | 0.8138 | 0.9014 | 0.8063 | 0.8224 |
FKM1 | 0.8579 | 0.7881 | 0.8481 | 0.8035 | 0.8876 | 0.8076 | 0.8231 |
MFKM1 | 0.8575 | 0.7855 | 0.8475 | 0.8024 | 0.8889 | 0.8062 | 0.8233 |
FKM1-PDS | 0.8579 | 0.7881 | 0.8481 | 0.8035 | 0.8876 | 0.8076 | 0.8231 |
MFKM1-PDS | 0.8575 | 0.7856 | 0.8475 | 0.8024 | 0.8889 | 0.8062 | 0.8233 |
FKM1-ENNS | 0.8579 | 0.7881 | 0.8481 | 0.8035 | 0.8876 | 0.8076 | 0.8231 |
MFKM1-ENNS | 0.8575 | 0.7855 | 0.8475 | 0.8024 | 0.8889 | 0.8062 | 0.8233 |
FKM2 | 0.8518 | 0.7823 | 0.8387 | 0.8124 | 0.8899 | 0.8041 | 0.8236 |
MFKM2 | 0.8520 | 0.7833 | 0.8394 | 0.8128 | 0.8906 | 0.8048 | 0.8244 |
FKM2-PDS | 0.8518 | 0.7823 | 0.8387 | 0.8124 | 0.8899 | 0.8041 | 0.8236 |
MFKM2-PDS | 0.8520 | 0.7833 | 0.8394 | 0.8128 | 0.8906 | 0.8048 | 0.8244 |
FKM2-ENNS | 0.8518 | 0.7823 | 0.8387 | 0.8124 | 0.8899 | 0.8041 | 0.8236 |
MFKM2-ENNS | 0.8520 | 0.7833 | 0.8394 | 0.8128 | 0.8906 | 0.8048 | 0.8244 |
Algorithm | SSIM | ||||||
---|---|---|---|---|---|---|---|
Lena | Barbara | Elaine | Boat | Clock | Goldhill | P-M-T | |
KM | 0.8893 | 0.8351 | 0.8808 | 0.8514 | 0.9173 | 0.8450 | 0.8534 |
FKM | 0.8935 | 0.8371 | 0.8843 | 0.8540 | 0.9226 | 0.8478 | 0.8516 |
MFKM | 0.8935 | 0.8372 | 0.8843 | 0.8539 | 0.9231 | 0.8479 | 0.8518 |
FKM1 | 0.8875 | 0.8349 | 0.8764 | 0.8478 | 0.9095 | 0.8452 | 0.8530 |
MFKM1 | 0.8877 | 0.8322 | 0.8761 | 0.8490 | 0.9100 | 0.8442 | 0.8529 |
FKM1-PDS | 0.8875 | 0.8349 | 0.8764 | 0.8478 | 0.9095 | 0.8452 | 0.8530 |
MFKM1-PDS | 0.8877 | 0.8322 | 0.8761 | 0.8490 | 0.9100 | 0.8442 | 0.8529 |
FKM1-ENNS | 0.8875 | 0.8349 | 0.8764 | 0.8478 | 0.9096 | 0.8452 | 0.8530 |
MFKM1-ENNS | 0.8877 | 0.8322 | 0.8761 | 0.8490 | 0.9100 | 0.8442 | 0.8529 |
FKM2 | 0.8842 | 0.8333 | 0.8690 | 0.8520 | 0.9145 | 0.8450 | 0.8550 |
MFKM2 | 0.8852 | 0.8339 | 0.8696 | 0.8527 | 0.9155 | 0.8460 | 0.8553 |
FKM2-PDS | 0.8842 | 0.8333 | 0.8690 | 0.8520 | 0.9145 | 0.8450 | 0.8550 |
MFKM2-PDS | 0.8852 | 0.8339 | 0.8696 | 0.8527 | 0.9155 | 0.8460 | 0.8553 |
FKM2-ENNS | 0.8842 | 0.8333 | 0.8690 | 0.8519 | 0.9145 | 0.8450 | 0.8550 |
MFKM2-ENNS | 0.8852 | 0.8339 | 0.8696 | 0.8527 | 0.9155 | 0.8460 | 0.8553 |
Images | N = 32 | N = 64 | N = 128 | N = 256 | ||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Lena | 25.62 | 0.7211 | 26.34 | 0.7604 | 26.91 | 0.7816 | 27.50 | 0.8133 |
Barbara | 24.09 | 0.6350 | 24.66 | 0.6679 | 25.19 | 0.6982 | 25.68 | 0.7293 |
Elaine | 26.62 | 0.7223 | 27.51 | 0.7626 | 28.11 | 0.7848 | 28.88 | 0.8134 |
Boat | 24.16 | 0.6575 | 24.88 | 0.7038 | 25.31 | 0.7259 | 25.89 | 0.7633 |
Clock | 25.21 | 0.7991 | 26.05 | 0.8207 | 26.81 | 0.8470 | 27.32 | 0.8618 |
Goldhill | 25.71 | 0.6391 | 26.34 | 0.6788 | 26.92 | 0.7132 | 27.45 | 0.7435 |
Tiffany | 28.21 | 0.7493 | 29.10 | 0.7917 | 30.40 | 0.8365 | 31.38 | 0.8647 |
Images | Spatial Domain VQ. Performance Inside the Training Set | Spatial Domain VQ with Codebooks Designed by Using P-M-T Training Set | DWT VQ with Multiresolution Codebooks Designed by Using P-M-T Training Set | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Lena | 26.72 | 0.7791 | 25.62 | 0.7211 | 29.35 | 0.8367 |
Barbara | 24.78 | 0.6822 | 24.09 | 0.6350 | 25.00 | 0.7573 |
Elaine | 27.79 | 0.7566 | 26.62 | 0.7223 | 29.72 | 0.8304 |
Boat | 24.90 | 0.7047 | 24.16 | 0.6575 | 25.49 | 0.7581 |
Clock | 26.27 | 0.8364 | 25.21 | 0.7991 | 28.22 | 0.8672 |
Goldhill | 26.76 | 0.7085 | 25.71 | 0.6391 | 26.81 | 0.7640 |
Tiffany | 29.01 | 0.8078 | 28.21 | 0.7493 | 30.21 | 0.8099 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, E.; Bandeira, S.; De Mattos Neto, P.; Lopes, W.; Madeiro, F. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design. Sensors 2016, 16, 1963. https://doi.org/10.3390/s16111963
Mata E, Bandeira S, De Mattos Neto P, Lopes W, Madeiro F. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design. Sensors. 2016; 16(11):1963. https://doi.org/10.3390/s16111963
Chicago/Turabian StyleMata, Edson, Silvio Bandeira, Paulo De Mattos Neto, Waslon Lopes, and Francisco Madeiro. 2016. "Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design" Sensors 16, no. 11: 1963. https://doi.org/10.3390/s16111963
APA StyleMata, E., Bandeira, S., De Mattos Neto, P., Lopes, W., & Madeiro, F. (2016). Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design. Sensors, 16(11), 1963. https://doi.org/10.3390/s16111963