In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy
"> Figure 1
<p>Schematic of the LipsImag apparatus and its application for in situ and in vivo elemental mapping of maize.</p> "> Figure 2
<p>The photographs in a real application of LipsImag for an in-field measurement. (<b>a</b>) Maize plants for the elemental mapping experiment; (<b>b</b>) Photograph of a maize leaf after a 20 × 20 scanning by LipsImag; (<b>c</b>) The microstructure of a single shot on a maize leaf by LipsImag; (<b>d</b>) A plasma emission spectra from the scanning that is shown in (<b>b</b>).</p> "> Figure 3
<p>The mapping results of holly (Ilex chinensis Sims) leaf based on the spectral intensities of specific elements using LipsImag. (<b>a</b>) The visible image of the leaf for the mapping experiment; (<b>b</b>) and (<b>c</b>) shows the distributions of the spectral intensities of Mg and K, respectively; (<b>d</b>,<b>e</b>) illustrate the spectral characteristics of Mg and K that were used for mapping.</p> "> Figure 4
<p>The laser-induced plasma spectral characteristics of chlorpyrifos in a leaf. (<b>a</b>) The spectral characteristics of the element P at 213.62 nm and 214.91 nm; (<b>b</b>) The spectral characteristics of the element P at 253.56 nm and 255.33 nm; (<b>c</b>) The spectral characteristics of the element Cl at 827.59 nm; (<b>d</b>) The multi-variable linear regression model for chlorpyrifos measurement based on the spectral characteristics of P and Cl.</p> "> Figure 5
<p>The 2D mapping results of chlorpyrifos on a leaf surface using LipsImag. (<b>a</b>) The mapping result of pesticide on a leaf that used 100 mL chlorpyrifos EC (40.7%) diluted by 50 L water and was subsequently sprayed in a 1 mu (666.7 m<sup>2</sup>) maize field; (<b>b</b>) The mapping result of a lower concentration of pesticide that used 10 mL chlorpyrifos; (<b>c</b>) The mapping result of the leaf 10 h after spray application that used 100 mL chlorpyrifos EC. The left image of (<b>a</b>–<b>c</b>) shows the visible image observed by microscopy, while the right image is the scanning results that show the distribution of the pesticide.</p> "> Figure 6
<p>The 3-dimensional mapping of pesticide residues in a maize leaf 10 h after spray. (<b>a</b>) is the visible image of the scanning area observed by microscopy; (<b>b</b>) is a cross-sectional image that shows the pesticide distribution in a lateral plane; (<b>c</b>) shows the 3-dimensional image of the pesticide by scanning one plane after another, with a thickness of 12 µm for each plane.</p> "> Figure 7
<p>Determination of K in soil using LipsImag. (<b>a</b>) shows the spectral characteristics of K in soil; (<b>b</b>) is the calibration model for K concentration measurement.</p> ">
Abstract
:1. Introduction
2. Experimental Methods
2.1. LipsImag
2.2. Samples
2.3. Experiments
2.4. Spectral Processing and Mapping Methods
3. Results and Discussion
3.1. In Situ and In Vivo 3-Dimensional Elemental Mapping of Plant Leaves
3.2. Chlorpyrifos Residue Spectral Characteristics in Plants and Quantitative Analyses Thereof
3.3. Two-Dimensional Mapping of Chlorpyrifos on a Leaf Surface
3.4. Three-Dimensional Mapping of Chlorpyrifos in Leaves
3.5. Measurement of the Element Concentrations in Soil Using LipsImag
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, F.J.; Moore, K.L.; Lombi, E.; Zhu, Y.G. Imaging element distribution and speciation in plant cells. Trends Plant Sci. 2014, 19, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Becker, J.S. Imaging techniques for elements and element species in plant science. Metallomics 2012, 4, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Waldron, K.J.; Rutherford, J.C.; Ford, D.; Robinson, N.J. Metalloproteins and metal sensing. Nature 2009, 460, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Hare, D.J.; New, E.J.; de Jonge, M.D.; McColl, G. Imaging metals in biology: Balancing sensitivity, selectivity and spatial resolution. Chem. Soc. Rev. 2015, 44, 5941–5958. [Google Scholar] [CrossRef] [PubMed]
- Van de Plas, R.; Yang, J.; Spraggins, J.; Caprioli, R.M. Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Methods 2015, 12, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Eliceiri, K.W.; Berthold, M.R.; Goldberg, I.G.; Ibáñez, L.; Manjunath, B.S.; Martone, M.E.; Murphy, R.F.; Peng, H.; Plant, A.L.; Roysam, B.; et al. Biological imaging software tools. Nat. Methods 2012, 9, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Ingall, E.D.; Diaz, J.M.; Longo, A.F.; Oakes, M.; Finney, L.; Vogt, S.; Lai, B.; Yager, P.L.; Twining, B.S.; Brandes, J.A. Role of biogenic silica in the removal of iron from the Antarctic seas. Nat. Commun. 2013, 4, 1981. [Google Scholar] [CrossRef] [PubMed]
- Isaure, M.P.; Fraysse, A.; Devès, G.; le Lay, P.; Fayard, B.; Susini, J.; Bourguignon, J.; Ortega, R. Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie 2006, 88, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Angelo, M.; Bendall, S.C.; Finck, R.; Hale, M.B.; Hitzman, C.; Borowsky, A.D.; Levenson, R.M.; Lowe, J.B.; Liu, S.D.; Zhao, S.; et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 2014, 20, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.S.; Becker, J.S. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta B At. Spectrosc. 2008, 63, 1248–1252. [Google Scholar] [CrossRef]
- Becker, J.S.; Zoriy, M.; Wu, B.; Matuschb, A.; Becker, J.S. Imaging of essential and toxic elements in biological tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2008, 23, 1275. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, B.; Zou, D.; Hang, W.; He, J.; Huang, B. Elemental imaging via laser ionization orthogonal time-of-flight mass spectrometry. Anal. Chem. 2011, 83, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Dodani, S.C.; Chang, C.J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 2012, 4, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.J.; Choi, W.G.; Chanoca, A.; Gilroy, S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu. Rev. Plant Biol. 2011, 62, 273–297. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, C.; Lahlali, R.; Zhu, N.; Webb, A.M.; Schmidt, M.; Fransishyn, K.; Belev, G.; Wysokinski, T.; Olson, J.; Cooper, D.M.; et al. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging. Sci. Rep. 2015, 5, 12119. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Lee, S.J. Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves. New Phytol. 2010, 188, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Terzano, R.; Alfeld, M.; Janssens, K.; Vekemans, B.; Schoonjans, T.; Vincze, L.; Tomasi, N.; Pinton, R.; Cesco, S. Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence. Anal. Bioanal. Chem. 2013, 405, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Wernet, P.; Kunnus, K.; Josefsson, I.; Rajkovic, I.; Quevedo, W.; Beye, M.; Schreck, S.; Grübel, S.; Scholz, M.; Nordlund, D.; et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature 2015, 520, 78–81. [Google Scholar] [CrossRef]
- Chaurand, P. Imaging mass spectrometry of thin tissue sections: A decade of collective efforts. J. Proteom. 2012, 75, 4883–4892. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.A.; Arruda, M.A. Laser ablation (imaging) for mapping and determining Se and S in sunflower leaves. Metallomics 2013, 5, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Hare, D.; Austin, C.; Doble, P. Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 2012, 137, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chen, Y.; Becker, J.S. Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Anal. Chim. Acta 2009, 633, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zoriy, M.; Chen, Y.; Becker, J.S. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 2009, 78, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Carolan, V.A.; Crosland, S.; Sharples, K.R.; Clench, M.R. Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun. Mass Spectrom. 2009, 23, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Carolan, V.A.; Crosland, S.; Sharples, K.R.; Clench, M.R. Examination of the translocation of sulfonylurea herbicides in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun. Mass Spectrom. 2010, 24, 3309–3319. [Google Scholar] [CrossRef] [PubMed]
- Annangudi, S.P.; Myung, K.; Avila Adame, C.; Gilbert, J.R. MALDI-MS Imaging Analysis of Fungicide Residue Distributions on Wheat Leaf Surfaces. Environ. Sci. Technol. 2015, 49, 5579–5583. [Google Scholar] [CrossRef] [PubMed]
- Noll, R. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- CREMERS, D.A. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bousquet, B.; Sirven, J.B.; Canioni, L. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples. Spectrochim. Acta B At. Spectrosc. 2007, 62, 1582–1589. [Google Scholar] [CrossRef]
- Du, X.; Dong, D.; Zhao, X.; Jiao, L.; Han, P.; Lang, Y. Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy. RSC Adv. 2015, 5, 79956–79963. [Google Scholar] [CrossRef]
- Meslin, P.Y.; Gasnault, O.; Forni, O.; Schröder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science 2013, 341, 1238670. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.R.; Oropeza, D.D.; Gonzalez, J.J.; Hou, H.; Morey, M.; Zorbaa, V.; Russo, E.R. Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 1292. [Google Scholar] [CrossRef]
- Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta B At. Spectrosc. 2009, 64, 67–73. [Google Scholar] [CrossRef]
- Sancey, L.; Motto-Ros, V.; Busser, B.; Kotb, S.; Benoit, J.M.; Piednoir, A.; Lux, F.; Tillement, O.; Panczer, G.; Yu, J. Laser spectrometry for multi-elemental imaging of biological tissues. Sci. Rep. 2014, 4, 6065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, P.; Laserna, J.J. Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry. Spectrochim. Acta B At. Spectrosc. 2001, 56, 177–185. [Google Scholar]
- Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J.M.; Zaun, V.; Lux, F.; Benoit, J.M.; Panczer, G.; Dugourd, P.; et al. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy. Sci. Rep. 2016, 6, 29936. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, D.G.; Papadakis, V.; Anglos, D. In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures. J. Anal. At. Spectrom. 2004, 19, 483–488. [Google Scholar] [CrossRef]
- Wang, X.; Motto-Ros, V.; Panczer, G.; De Ligny, D.; Yu, J.; Benoit, J.M.; Dussossoy, J.L.; Peuget, S. Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2013, 87, 139–146. [Google Scholar]
- Piñon, V.; Mateo, M.P.; Nicolas, G. Laser-induced breakdown spectroscopy for chemical mapping of materials. Appl. Spectrosc. Rev. 2013, 48, 357–383. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H.; Theriault, G.A. Field demonstrations of a direct push FO-LIBS metal sensor. Environ. Sci. Technol. 2002, 36, 3968–3976. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, Á.; Delgado, T.; Lucena, P.; Laserna, J.J. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochim. Acta B At. Spectrosc. 2013, 89, 77–83. [Google Scholar] [CrossRef]
- Ma, F.; Dong, D. A Measurement Method on Pesticide Residues of Apple Surface Based on Laser-Induced Breakdown Spectroscopy. Food Anal. Methods 2014, 7, 1858–1865. [Google Scholar] [CrossRef]
- Kondo, H.; Hamada, N.; Wagatsuma, K. Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry. Spectrochim. Acta B At. Spectrosc. 2009, 64, 884–890. [Google Scholar] [CrossRef]
- Li, C.M.; Zou, Z.M.; Yang, X.Y.; Hao, Z.Q.; Guo, L.B.; Li, X.Y.; Lua, Y.F.; Zeng, X.Y. Quantitative analysis of phosphorus in steel using laser-induced breakdown spectroscopy in air atmosphere. J. Anal. At. Spectrom. 2014, 29, 1432. [Google Scholar] [CrossRef]
- Milan, M.; Lucena, P.; Cabalin, L.M. Depth Profiling of Phosphorus in Photonic-Grade Silicon Using Laser-Induced Breakdown Spectrometry. Appl. Spectrosc. 1998, 52, 444–448. [Google Scholar] [CrossRef]
- Delgado, T.; Vadillo, J.M.; Laserna, J.J. Laser-induced plasma spectroscopy of organic compounds. Understanding fragmentation processes using ion–photon coincidence measurements. J. Anal. At. Spectrom. 2013, 28, 1377. [Google Scholar]
- De Lucia, F.C.; Gottfried, J.L. Characterization of a Series of Nitrogen-Rich Molecules using Laser Induced Breakdown Spectroscopy. Propellants Explos. Pyrotech. 2010, 35, 268–277. [Google Scholar] [CrossRef]
- Doucet, F.R.; Faustino, P.J.; Sabsabia, M.; Lyonb, R.C. Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics. J. Anal. At. Spectrom. 2008, 23, 694. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.D.; Cremers, D.A.; Ebinger, M.H.; Bluhm, B.K. Determination of nitrogen in sand using laser-induced breakdown spectroscopy. Appl. Spectrosc. 2004, 58, 770–775. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Dong, D.; Du, X.; Zheng, W. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy. Sensors 2016, 16, 1764. https://doi.org/10.3390/s16101764
Zhao C, Dong D, Du X, Zheng W. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy. Sensors. 2016; 16(10):1764. https://doi.org/10.3390/s16101764
Chicago/Turabian StyleZhao, Chunjiang, Daming Dong, Xiaofan Du, and Wengang Zheng. 2016. "In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy" Sensors 16, no. 10: 1764. https://doi.org/10.3390/s16101764