Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6
<p>Schematic diagram of the intensity-stabilization of a distributed feedback (DFB) laser; <span class="html-italic">f</span>-PR: fiber polarization rotator; <span class="html-italic">f</span>-Pol: fiber polarization; <span class="html-italic">f</span>-SP: fiber splitter; <span class="html-italic">f</span>-C; fiber coupler; PD: photodiode; PI: proportion- integration controller. The <span class="html-italic">f</span>-PR and <span class="html-italic">f</span>-Pol make jointly up the intensity controller (IC).</p> "> Figure 2
<p>(<b>a</b>) Transmission of linearly polarized light through the intensity stabilizer as a function of the voltage applied to the fiber polarization rotator (<span class="html-italic">f</span>-PR); Frequency dependence of the (<b>b</b>) amplitude and (<b>c</b>) phase responses of the PR. Solid squared markers represent individual data points. Blue solid lines make up curves to guide the eye through the individual data points. The blue dotted lines in panel (a) represent the x- and y-values of the nominal working position of the <span class="html-italic">f</span>-PR while those in panel (b) indicate the amplitudes and frequency for the 3-dB response. The dashed dotted lines represent the linear responses at the positions for close-to-linear response.</p> "> Figure 3
<p>(<b>a</b>) Long term monitoring of the light intensity with and without stabilization; the (<b>b</b>) corresponding noise spectra and (<b>c</b>) Allan-Werle deviations.</p> "> Figure 4
<p>Schematic diagram of the DFB-laser-based intensity-stabilized fast-scanned direct absorption (IS-FS-DAS) spectroscopy instrumentation used in this work. IS: intensity stabilization system; FG: function generation; PC: personal computer.</p> "> Figure 5
<p>Upper windows: A comparison of the transmitted intensity without (panel <b>a</b>) and with (panel <b>b</b>) intensity stabilization. The red curves represent measurements from an empty gas cell while the black ones correspond to the case when 16 ppm of C<sub>2</sub>H<sub>2</sub> is in the cell. Lower windows: The corresponding absorption coefficients created by the use of Beer’s law and the data in the upper windows.</p> "> Figure 6
<p>A comparison of absorption coefficients obtained by the use of the (<b>a</b>) conventional and (<b>b</b>) new DAS scheme for a given measurement time (1 s).</p> ">
Abstract
:1. Introduction
2. Intensity Stabilization
3. Performance of the System for Detection of Gas
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59, 2544–2551. [Google Scholar] [CrossRef]
- Romanini, D.; Lehmann, K.K. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys. 1993, 99, 6287–6301. [Google Scholar] [CrossRef]
- Zalicki, P.; Zare, R.N. Cavity ring-down spectroscopy for quantitative absorption measurements. J. Chem. Phys. 1994, 102, 2708–2717. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Romanini, D.; Kachanov, A.A. Diode laser cavity ring down spectroscopy. Chem. Phys. Lett. 1997, 270, 538–545. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Preface. In Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980; p. VII. [Google Scholar]
- Limero, T.; Reese, E.; Cheng, P.; Trowbridge, J. Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. Int. J. Ion Mobil. Spec. 2011, 14, 81–91. [Google Scholar] [CrossRef]
- Chen, J.; Hangauer, A.; Strzoda, R.; Amann, M.C. Tunable diode laser spectroscopy with optimum wavelength scanning. Appl. Phys. B Lasers Opt. 2010, 100, 331–339. [Google Scholar] [CrossRef]
- Li, Z.X.; Ma, W.G.; Fu, X.F.; Tan, W.; Zhao, G.; Dong, L.; Zhang, L.; Yin, W.B.; Jia, S.T. Optimization investigations of continuous wave cavity ringdown spectroscopy. Appl. Phys. Express 2013, 6. [Google Scholar] [CrossRef]
- Silander, I.; Hausmaninger, T.; Ma, W.G.; Ehlers, P.; Axner, O. Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 4 × 10−13 cm−1·Hz−1/2: Implementation of a 50,000 finesse cavity. Opt. Lett. 2015, 40, 2004–2007. [Google Scholar] [CrossRef] [PubMed]
- Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B Lasers Opt. 2005, 80, 1027–1038. [Google Scholar] [CrossRef]
- Li, Z.X.; Ma, W.G.; Fu, X.F.; Tan, W.; Zhao, G.; Dong, L.; Zhang, L.; Yin, W.B.; Jia, S.T. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection. Opt. Express 2013, 21, 17961–17971. [Google Scholar] [CrossRef] [PubMed]
- Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS. Appl. Phys. B Lasers Opt. 2010, 100, 367–376. [Google Scholar] [CrossRef]
- Hobbs, P.C.D. Ultrasensitive laser measurements without tears. Appl. Opt. 1997, 36, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Werle, P. Spectroscopic trace gas analysis using semiconductor diode lasers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1996, 52, 805–822. [Google Scholar] [CrossRef]
- Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Kluczynski, P.; Axner, O. Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 1999, 38, 5803–5815. [Google Scholar] [CrossRef] [PubMed]
- Fried, A.; Richter, D. Infrared Absorption Spectroscopy. In Analytical Techniques for Atmospheric Measurement; Heard, D.E., Ed.; Blackwell Publishing: Oxford, UK, 2007; p. 146. [Google Scholar]
- Zhao, G.; Tan, W.; Hou, J.J.; Qiu, X.D.; Ma, W.G.; Li, Z.X.; Dong, L.; Zhang, L.; Yin, W.B.; Xiao, L.T.; et al. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser. Opt. Express 2016, 24, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Witzel, O.; Ebert, V. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-Spectroscopy. Sensors 2014, 14, 21497–21513. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.A. Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods. Appl. Opt. 1992, 31, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Werle, P. Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers. Appl. Phys. B Lasers Opt. 1995, 60, 499–506. [Google Scholar] [CrossRef]
- Iseki, T.; Tai, H.; Kimura, K. A portable remote methane sensor using a tunable diode laser. Meas. Sci. Technol. 2000, 11, 594–602. [Google Scholar] [CrossRef]
- Hangauer, A.; Chen, J.; Strzoda, R.; Fleischer, M.; Amann, M.C. Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor. Opt. Express 2014, 22, 13680–13690. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K.; Lewicki, R.; Nahle, L.; Fischer, M.; Koeth, J.; Belahsene, S.; Rouillard, Y.; Worschech, L.; Tittel, F.K. Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane. Appl. Phys. B Lasers Opt. 2012, 106, 251–255. [Google Scholar] [CrossRef]
- Sonnenfroh, D.M.; Rawlins, W.T.; Allen, M.G.; Gmachl, C.; Capasso, F.; Hutchinson, A.L.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers. Appl. Opt. 2001, 40, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.G.; Carleton, K.L.; Davis, S.J.; Kessler, W.J.; Otis, C.E.; Palombo, D.A.; Sonnenfroh, D.M. Ultrasensitive dual-beam absorption and gain spectroscopy—Applications for near-infrared and visible diode-laser sensors. Appl. Opt. 1995, 34, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Werle, P.; Mucke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Werle, P.; Mazzinghi, P.; D’Amato, F.; De Rosa, M.; Maurer, K.; Slemr, F. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1685–1705. [Google Scholar] [CrossRef] [PubMed]
- Witzel, O.; Klein, A.; Wagner, S.; Meffert, C.; Schulz, C.; Ebert, V. High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine. Appl. Phys. B Lasers Opt. 2012, 109, 521–532. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; Taubman, M.S.; Ye, J. Laser Stabilization. In Handbook of Optics, 3rd ed.; Bass, M., Ed.; McGraw-Hill: New York, NY, USA, 2010; Volume 2, p. 22.1. [Google Scholar]
- Hunsmann, S.; Wunderle, K.; Wagner, S.; Rascher, U.; Schurr, U.; Ebert, V. Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B Lasers Opt. 2008, 92, 393–401. [Google Scholar] [CrossRef]
- Peterson, K.A.; Daniel, B.O. High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source. Opt. Lett. 1999, 24, 667–669. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Tan, W.; Jia, M.; Hou, J.; Ma, W.; Dong, L.; Zhang, L.; Feng, X.; Wu, X.; Yin, W.; et al. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6. Sensors 2016, 16, 1544. https://doi.org/10.3390/s16091544
Zhao G, Tan W, Jia M, Hou J, Ma W, Dong L, Zhang L, Feng X, Wu X, Yin W, et al. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6. Sensors. 2016; 16(9):1544. https://doi.org/10.3390/s16091544
Chicago/Turabian StyleZhao, Gang, Wei Tan, Mengyuan Jia, Jiajuan Hou, Weiguang Ma, Lei Dong, Lei Zhang, Xiaoxia Feng, Xuechun Wu, Wangbao Yin, and et al. 2016. "Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6" Sensors 16, no. 9: 1544. https://doi.org/10.3390/s16091544