A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors
<p>Orientation of the body frame <b><span class="html-italic">b</span></b> expressed in the navigation frame <b><span class="html-italic">n</span></b>.</p> "> Figure 2
<p>Proposed dual-linear Kalman filter.</p> "> Figure 3
<p>Assumed trajectory for different sensor models.</p> "> Figure 4
<p>Time-varying pitch estimation errors based on three different sensor models.</p> "> Figure 5
<p>Performance comparisons of the absolute pitch estimation error.</p> "> Figure 6
<p>Homemade prototype of the MODS (<b>a</b>) sensors layout; (<b>b</b>) bespoke housing.</p> "> Figure 7
<p>Comparisons (log–log scale) between the Haar WV and GMWM.</p> "> Figure 8
<p>Online turntable experiments for the MODS.</p> "> Figure 9
<p>Estimated orientation during static tests (<b>a</b>) pitch angle; (<b>b</b>) roll angle; (<b>c</b>) yaw angle.</p> "> Figure 10
<p>Estimated orientation during dynamic tests (<b>a</b>) pitch angle; (<b>b</b>) roll angle; (<b>c</b>) yaw angle.</p> "> Figure 11
<p>Tests on the two-wheel self-balancing vehicle (<b>a</b>) with MODS fixed on the vehicle; (<b>b</b>) schematic diagram for the vehicle driving.</p> "> Figure 12
<p>Estimated attitude angle during two-wheel self-balancing vehicle test (<b>a</b>) pitch angle; (<b>b</b>) roll angle.</p> "> Figure 13
<p>(<b>a</b>) Indoor pedestrian walking tests and (<b>b</b>) stair-climbing tests.</p> "> Figure 14
<p>Inertial sensors measurements during walking (<b>a</b>) acceleration; (<b>b</b>) angular rate.</p> "> Figure 15
<p>Estimated attitude angle during walking (<b>a</b>) pitch angle; (<b>b</b>) roll angle.</p> "> Figure 15 Cont.
<p>Estimated attitude angle during walking (<b>a</b>) pitch angle; (<b>b</b>) roll angle.</p> "> Figure 16
<p>Inertial sensors measurements during stair-climbing (<b>a</b>) acceleration; (<b>b</b>) angular rate.</p> "> Figure 17
<p>Estimated attitude angle during stair-climbing (<b>a</b>) pitch angle; (<b>b</b>) roll angle.</p> "> Figure 18
<p>Close-ups relevant to the estimated attitude angle during stair-climbing (<b>a</b>) pitch angle; (<b>b</b>) roll angle.</p> ">
Abstract
:1. Introduction
2. System Modeling
3. Dual-Linear Kalman Filter Design
4. Noise Characteristics
5. Hardware Design
6. Experiments and Results
6.1. Noise Variances Determination
6.2. Time Consumption Emulation
6.3. MODS Evaluation
6.3.1. Tri-Axis Turntable Experiments for the MODS
6.3.2. Experiments on the Two-Wheel Self-Balancing Vehicle Driving
6.3.3. Indoor Pedestrian Walking and Stair-Climbing Experiments
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Marina, H.G.; Pereda, F.J.; Giron-Sierra, J.M.; Espinosa, F. UAV attitude estimation using unscented kalman filter and TRIAD. IEEE Trans. Ind. Electron. 2012, 59, 4465–4474. [Google Scholar] [CrossRef]
- Wei, S.; Xu, A.G.; Yang, G. Strapdown gyrocompass algorithm for AUV attitude determination using a digital filter. Measurement 2013, 46, 815–822. [Google Scholar]
- Berger, C.; Al Mamun, M.A.; Hansson, J. COTS-architecture with a real-time OS for a self-driving miniature vehicle. In Proceedings of the Workshop on Architecting Safety in Collaborative Mobile Systems (ASCoMS) of the 32nd International Conference on Computer Safety, Reliability and Security, Toulouse, France, 24–27 September 2013; pp. 1–12.
- Peng, H.; Cardou, P.; Desbiens, A.; Gagnon, E. Estimating the orientation of a rigid body moving in space using inertial sensors. Mutibody Syst. Dyn. 2014, 2014, 1–27. [Google Scholar]
- Al Delail, B.; Weruaga, L.; Zemerly, M.J.; Ng, J.W.P. Indoor localization and navigation using smartphones augmented reality and inertial tracking. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, Abu Dhabi, UAE, 8–11 December 2013; pp. 929–932.
- Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Öhberg, F.; Lundström, R.; Grip, H. Comparative analysis of different adaptive filters for tracking lower segments of a human body using inertial motion sensors. Meas. Sci. Technol. 2013, 24, 50–61. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, I.M. Localization and velocity tracking of human via 3 IMU sensors. Sens. Actuators A Phys. 2014, 212, 25–33. [Google Scholar] [CrossRef]
- Farrell, J.; Barth, M. The Global Positioning System and Inertial Navigation; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Kusuda, Y.; Takahashi, M. Feedback control with nominal inputs for agile satellites using control moment gyros. J. Guid. Control Dynam. 2012, 34, 1209–1218. [Google Scholar] [CrossRef]
- Bekkeng, J.K.; Psiaki, M.L. Attitude estimation for sounding rockets using microelectromechanical system gyros. J. Guid. Control Dynam. 2012, 31, 533–542. [Google Scholar] [CrossRef]
- Guerrier, S.; Skaloud, J.; Stebler, Y.; Victoria-Feser, M.P. Wavelet-variance-based estimation for composite stochastic processes. J. Am. Stat. Assoc. 2013, 108, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Bachmann, E.; Mcghee, R. A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. IEEE Trans. Instrum. Meas. 2008, 57, 638–650. [Google Scholar]
- Searcy, J.D.; Pernicka, H.J. Magnetometer-only attitude determination using novel two-step Kalman filter approach. J. Guid. Control Dynam. 2012, 35, 1693–1701. [Google Scholar] [CrossRef]
- Renaudin, V.; Combettes, C. Magnetic, acceleration fields and gyro quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation. Sensors 2014, 14, 22864–22890. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.S.; Hong, S.K.; Yoon, H.M.; Park, S. Gain-scheduled complementary filter design for a MEMS based attitude and heading reference system. Sensors 2011, 11, 3816–3830. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.M.; Shiau, J.K.; Wang, I.C.; Lin, Y.H. Attitude determination using a MEMS-based flight information measurement unit. Sensors 2012, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Sun, D.; Zhou, Z.; Wang, D. A linear fusion algorithm for attitude determination using low cost MEMS-based sensors. Measurement 2007, 40, 322–328. [Google Scholar] [CrossRef]
- Han, S.; Wang, J. A novel method to integrate IMU and magnetometers in attitude and heading reference systems. J. Navig. 2011, 64, 727–738. [Google Scholar] [CrossRef]
- Li, W.; Wang, J. Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. J. Navig. 2013, 66, 99–113. [Google Scholar] [CrossRef]
- Sabatelli, S.; Galgani, M.; Fanucci, L.; Rocchi, A. A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans. Instrum. Meas. 2013, 62, 590–598. [Google Scholar] [CrossRef]
- Yuan, X.; Yu, S.; Zhang, S.; Wang, G.; Liu, S. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system. Sensors 2015, 15, 10872–10890. [Google Scholar] [CrossRef] [PubMed]
- Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed.; Institution of Electronical Engineers: Reston, VA, USA, 2004. [Google Scholar]
- Sabatini, A.M. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation. Sensors 2011, 11, 9182–9206. [Google Scholar] [CrossRef] [PubMed]
- Renaudin, V.; Afzal, M.H.; Lachapelle, G. Complete triaxis magnetometer calibration in the magnetic domain. J. Sens. 2010, 115, 23–59. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. A new calibration method for tri-axial field sensors in strap-down navigation systems. Meas. Sci. Technol. 2012, 23, 2852–2855. [Google Scholar] [CrossRef]
- Metge, J.; Mégret, R.; Giremus, A.; Berthoumieu, Y.; Décamps, T. Calibration of an inertial-magnetic measurement unit without external equipment, in the presence of dynamic magnetic disturbances. Meas. Sci. Technol. 2014, 25, 125106–125122. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, G. Calibration of miniature inertial and magnetic sensor units for robust attitude estimation. IEEE Trans. Instrum. Meas. 2014, 63, 711–718. [Google Scholar] [CrossRef]
- Xsens Technologies B.V. MTi300 datasheet. Available online: https://www.xsens.com/products/mti-100-series/ (accessed on 17 February 2016).
Model | Parameter | Estimate | IC (0.95) |
---|---|---|---|
Model 1 | 4.654064e−06 | (4.639158e−06; 4.668971e−06) | |
Model 2 | 4.653360e−06 | (4.639986e−06; 4.666734e−06) | |
5.342647e−02 | (5.106282e−02; 5.579013e−02) | ||
Model 3 | 9.246705e−12 | (5.989062e−12; 1.250435e−11) | |
9.990636e−01 | (9.990636e−01; 9.990636e−01) | ||
8.794771e−13 | (4.427838e−13; 1.316170e−12) | ||
9.999861e−01 | (9.999861e−01; 9.999861e−01) | ||
4.658634e−06 | (4.640222e−06; 4.677046e−06) | ||
3.307696e−02 | (3.307696e−02; 3.307696e−02) |
Method | Mean Time Consumption | Mean Attitude Error |
---|---|---|
Method A | 8.72 s | 0.25° |
Method B | 11.45 s | 0.36° |
Test State | Pitch | Roll | Yaw |
---|---|---|---|
Static | 0.045° | 0.064° | 0.352° |
Dynamic | 0.301° | 0.386° | 0.845° |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yu, S.; Liu, C.; Yuan, X.; Liu, S. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors. Sensors 2016, 16, 264. https://doi.org/10.3390/s16020264
Zhang S, Yu S, Liu C, Yuan X, Liu S. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors. Sensors. 2016; 16(2):264. https://doi.org/10.3390/s16020264
Chicago/Turabian StyleZhang, Shengzhi, Shuai Yu, Chaojun Liu, Xuebing Yuan, and Sheng Liu. 2016. "A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors" Sensors 16, no. 2: 264. https://doi.org/10.3390/s16020264