Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System
<p>The SPR biosensing platfrom designed by using a laser line generator, a linear CCD module, a microfluidic cell and corresponding clamps. (<b>A</b>) Schematic diagram of the principle of this SPR biosensing platform; (<b>B</b>) The top view of the overall structure of this SPR biosensing platform without an instrument enclosure; (<b>C</b>) The side view of <a href="#sensors-15-20511-f001" class="html-fig">Figure 1</a>B.</p> "> Figure 2
<p>Schematic diagram of the interface system of this SPR biosensing system involving the SPR biosensor, the microcontroller and upper computer.</p> "> Figure 3
<p>Timing diagram for the photoelectric signals acquisition of the line CCD array.</p> "> Figure 4
<p>Sensorgrams with inset calibration curve diagrams obtained for different ethanol solution concentrations. The sensorgram was obtained from concentrations of 5%, 8%, 15%, 20%, 25% and 30% ethanol in volume fraction, respectively. The lower right inset indicates the fitting curve established by delta response units with different standard ethanol concentrations ranging from 5% to 30%.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Design of the SPR Biosensing System
3. Considerations on Data Acquisition
3.1. Optimization of Interface Circuits
3.2. Data Structure for Organizing and Storing Response Unit Signals (RUs)
3.3. Memory Management
Block 0 | Parameters area and the index of the record index area |
Block 1 | Measurement result record Index area, which indicates the measurement result record number, valid status, number of channels, starting address, total of the data, etc. |
Block 2 | Measurement results area |
…… | …… |
Block 127 | Measurement results area |
3.4. The Parameter Settings of the Circuit Module of UPD3575D
3.5. Considerations of A/D Converter
4. Results and Analysis
4.1. Response of the Biosensing System to Ethanol Concentrations
4.2. Sensitivity Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbas, A.; Linman, M.J.; Cheng, Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 2011, 26, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Perkins, E.A.; Squirrell, D.J. Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance. Biosens. Bioelectron. 2000, 14, 853–859. [Google Scholar] [CrossRef]
- Piliarik, M.; Vaisocherová, H.; Homola, J. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 2005, 20, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Sharma, P.K.; Sikarwar, B.; Merwyn, S.; Kaushik, S.; Boopathi, M.; Agarwal, G.S.; Singh, B. Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum. Biosens. Bioelectron. 2012, 36, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, O.R.; Live, L.S.; Masson, J.-F. High-resolution surface plasmon resonance sensors based on a dove prism. Talanta 2009, 77, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Azzam, E.M.S.; Bashir, A.; Shekhah, O.; Alawady, A.R.E.; Birkner, A.; Grunwald, C.; Wöll, C. Fabrication of a surface plasmon resonance biosensor based on gold nanoparticles chemisorbed onto a 1,10-decanedithiol self-assembled monolayer. Thin Solid Films 2009, 518, 387–391. [Google Scholar] [CrossRef]
- Kajiura, M.; Nakanishi, T.; Iida, H.; Takada, H.; Osaka, T. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. J. Colloid Interf. Sci. 2009, 335, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Bergström, G.; Mandenius, C.-F. Orientation and capturing of antibody affinity ligands: Applications to surface plasmon resonance biochips. Sens. Actuators B 2011, 158, 265–270. [Google Scholar] [CrossRef]
- Haughey, S.A.; Campbell, K.; Yakes, B.J.; Prezioso, S.M.; DeGrasse, S.L.; Kawatsu, K.; Elliott, C.T. Comparison of biosensor platforms for surface plasmon resonance based detection of paralytic shellfish toxins. Talanta 2011, 85, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.D.; Barlen, B.; Kämpfer, P.; Keusgen, M. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosens. Bioelectron. 2010, 25, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.D.; Hu, J.F.; Luo, F.K.; Li, W.; Jiang, G.; Li, Z.; Zhang, R. Design and validation of a low cost surface plasmon resonance bioanalyzer using microprocessors and a touch-screen monitor. Biosens. Bioelectron. 2009, 24, 1974–1978. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Takizawa, H.; Imai, Y.; Yanagida, Y.; Hatsuzawa, T. Study of electrical field distribution of gold-capped nanoparticle for excitation of localized surface plasmon resonance. Appl. Surf. Sci. 2011, 257, 2560–2566. [Google Scholar] [CrossRef]
- François, A.; Boehm, J.; Oh, S.Y.; Kok, T.; Monro, T.M. Collection mode surface plasmon fibre sensors: A new biosensing platform. Biosens. Bioelectron. 2011, 26, 3154–3159. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, J.P.; Han, S.J.; Sim, S.J. Aptamer biosensor for label-free detection of human immunoglobulin E based on surface plasmon resonance. Sens. Actuators B 2009, 139, 471–475. [Google Scholar] [CrossRef]
- Chinowsky, T.M.; Soelberg, S.D.; Baker, P.; Swanson, N.R.; Kauffman, P.; Mactutis, A.; Grow, M.S.; Atmar, R.; Yee, S.S.; Furlong, C.E. PorTable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens. Bioelectron. 2007, 22, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, I.; Courtois, V.; Lecaruyer, P.; Roger, G.; Millot, M.C.; Goossens, M.; Canva, M. Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sens. Actuators B 2006, 119, 583–591. [Google Scholar] [CrossRef]
- Myszka, D.G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 1997, 8, 50–57. [Google Scholar] [CrossRef]
- Gnedenko, O.V.; Mezentsev, Y.V.; Molnar, A.A.; Lisitsa, A.V.; Ivanov, A.S.; Archakov, A.I. Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal. Chim. Acta 2013, 759, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Eum, N.-S.; Kim, D.-E.; Yeom, S.-H.; Kang, B.-H.; Kim, K.-J.; Park, C.-S.; Kang, S.-W. Variable wavelength surface plasmon resonance (SPR) in biosensing. Biosystems 2009, 98, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, W.; Wang, T.; Lin, Z.; Jiang, M.; Hu, F. Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV). Biosens. Bioelectron. 2012, 31, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.S.; Wu, Y.; Cook, C.J.; Main, L. Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal. Chem. 2005, 343, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Chabot, V.; Cuerrier, C.M.; Escher, E.; Aimez, V.; Grandbois, M.; Charette, P.G. Biosensing based on surface plasmon resonance and living cells. Biosens. Bioelectron. 2009, 24, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Neff, H.; Zong, W.; Lima, A.M.N.; Borre, M.; Holzhüter, G. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films 2006, 496, 688–697. [Google Scholar] [CrossRef]
- Otsuki, S.; Ishikawa, M. Wavelength-scanning surface plasmon resonance imaging for label-free multiplexed protein microarray assay. Biosens. Bioelectron. 2010, 26, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2014, 313, 94–98. [Google Scholar] [CrossRef]
- Davis, T.M.; Wilson, W.D. Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data. Anal. Chem. 2000, 284, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Gobi, K.V.; Harada, R.; Shankaran, D.R.; Miura, N. Miniaturized portable surface plasmon resonance immunosensor applicable for on-site detection of low-molecular-weight analytes. Sens. Actuators B 2006, 115, 349–356. [Google Scholar] [CrossRef]
- Méjard, R.; Dostálek, J.; Huang, C.-J.; Griesser, H.; Thierry, B. Tuneable and robust long range surface plasmon resonance for biosensing applications. Opt. Mater. 2013, 35, 2507–2513. [Google Scholar] [CrossRef]
- Dong, W.; Pang, K.; Luo, Q.; Huang, Z.; Wang, X.; Tong, L. Improved polarization contrast method for surface plasmon resonance imaging sensors by inert background gold film extinction. Opt. Commun. 2015, 346, 1–9. [Google Scholar] [CrossRef]
- Jang, H.S.; Park, K.N.; Kang, C.D.; Kim, J.P.; Sim, S.J.; Lee, K.S. Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Commun. 2009, 282, 2827–2830. [Google Scholar] [CrossRef]
- Caide, X.; Sui, S.-F. Characterization of surface plasmon resonance biosensor. Sens. Actuators B 2000, 66, 174–177. [Google Scholar] [CrossRef]
- Aizawa, H.; Tozuka, M.; Kurosawa, S.; Kobayashi, K.; Reddy, S.M.; Higuchi, M. Surface plasmon resonance-based trace detection of small molecules by competitive and signal enhancement immunoreaction. Anal. Chem. 2007, 591, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, M.; Wang, S.; Liang, H.; Hu, X.; Sun, X.; Zhu, J.; Ma, L.; Jiang, M.; Hu, J. A low cost surface plasmon resonance biosensor using a laser line generator. Opt. Commun. 2015, 349, 83–88. [Google Scholar] [CrossRef]
- Baccar, H.; Mejri, M.B.; Hafaiedh, I.; Ktari, T.; Aouni, M.; Abdelghani, A. Surface plasmon resonance immunosensor for bacteria detection. Talanta 2010, 82, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Li, S.F.Y. An aptamer based surface plasmon resonance biosensor for the detection of bovine catalase in milk. Biosens. Bioelectron. 2013, 48, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Sarkar, K. Localized surface plasmon resonance-based DNA detection in solution using gold-decorated superparamagnetic Fe3O4 nanocomposite. Anal. Chem. 2014, 465, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Meecham, J.; Hamlin, M.; Henderson, B.; Kim, M.; Mirjankar, N.; Lavine, B.K. Development of field-deployable instrumentation based on “antigen-antibody” reactions for detection of hemorrhagic disease in ruminants. Microchem. J. 2011, 99, 415–420. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.; Chen, R.; Wang, S.; Li, J.; Hu, X.; Liang, H.; Cao, B.; Sun, X.; Ma, L.; Zhu, J.; et al. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System. Sensors 2015, 15, 20511-20523. https://doi.org/10.3390/s150820511
Chang K, Chen R, Wang S, Li J, Hu X, Liang H, Cao B, Sun X, Ma L, Zhu J, et al. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System. Sensors. 2015; 15(8):20511-20523. https://doi.org/10.3390/s150820511
Chicago/Turabian StyleChang, Keke, Ruipeng Chen, Shun Wang, Jianwei Li, Xinran Hu, Hao Liang, Baiqiong Cao, Xiaohui Sun, Liuzheng Ma, Juanhua Zhu, and et al. 2015. "Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System" Sensors 15, no. 8: 20511-20523. https://doi.org/10.3390/s150820511