AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein
<p>(<b>a</b>) Schematic of the AlGaN/GaN HEMT-based biosensor; (<b>b</b>) Photograph of the fabricated AlGaN/GaN HEMT-based biosensor.</p> "> Figure 2
<p>Measurement setup with the fabricated sensor chip packaged on a designed printed circuit board.</p> "> Figure 3
<p>Schematic of the null-balancing measurement circuit.</p> "> Figure 4
<p><span class="html-italic">I</span>-<span class="html-italic">V</span> characteristics of the AlGaN/GaN HEMT: (<b>a</b>) <span class="html-italic">I<sub>D</sub></span>-<span class="html-italic">V<sub>GS</sub></span>, <span class="html-italic">g<sub>m</sub></span>-<span class="html-italic">V<sub>GS</sub></span>; (<b>b</b>) <span class="html-italic">I<sub>D</sub></span>-<span class="html-italic">V<sub>DS</sub></span> characteristics.</p> "> Figure 5
<p>(<b>a</b>) S 2p; (<b>b</b>) S 2s high-resolution XPS spectra after SAM immobilization of the Au-deposited GaN sample.</p> "> Figure 6
<p><span class="html-italic">I<sub>D</sub></span>-<span class="html-italic">V<sub>DS</sub></span> characteristics of the AlGaN/GaN HEMT-based biosensor as a function of interactions among SAM, CRP-antibody, and CRP (1000 ng/mL).</p> "> Figure 7
<p>Output voltage characteristics of the AlGaN/GaN HEMT-based biosensor with null-balancing circuit applied (1000 ng/mL CRP and 1000 ng/mL Troponin T).</p> "> Figure 8
<p>Variation of <span class="html-italic">V<sub>OUT</sub></span> with concentration of CRP.</p> ">
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of the AlGaN/GaN HEMT-Based Biosensor
2.2. Measurement Procedure
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef] [PubMed]
- Clyne, B.; Olshaker, J.S. The C-reactive protein. J. Emerg. Med. 1999, 17, 1019–1025. [Google Scholar] [CrossRef]
- Barka, N.; Tomasi, J.P.; Stadtsbaeder, S. Use of whole Streptococcus pneumoniae cells as a solid phase sorbent for C-reactive protein measurement by ELISA. J. Immunol. Methods 1985, 82, 57–63. [Google Scholar] [CrossRef]
- Wu, T.L.; Tsao, K.C.; Chang, C.P.Y.; Li, C.N.; Sun, C.F.; Wu, J.T. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin. Chim. Acta 2002, 322, 163–168. [Google Scholar] [CrossRef]
- Härmä, H.; Toivonen, J.; Soini, J.T.; Hänninen, P.; Parak, W.J. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles. Sensors 2011, 11, 11335–11342. [Google Scholar] [CrossRef] [PubMed]
- Vieira, N.C.S.; Figueiredo, A.; de Queiroz, A.A.A.; Zucolotto, V.; Guimarães, F.E.G. Self-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors. Sensors 2011, 11, 9442–9449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.C.; Chen, H.Y.; Lin, C.Y.; Chien, C.H.; Hsieh, T.F.; Horng, J.T.; Qiu, J.T.; Huang, C.C.; Ho, C.H.; Yang, F.L. A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications. Sensors 2012, 12, 3952–3963. [Google Scholar] [CrossRef] [PubMed]
- Chow, T.P.; Tyagi, R. Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices. IEEE Trans. Electron Devices 1994, 41, 1481–1483. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Matsui, T.; Mimura, T. AlGaN/GaN MIS-HFETs with fT of 163 GHz using cat-CVD SiN gate-insulating and passivation layers. IEEE Electron Device Lett. 2006, 27, 16–18. [Google Scholar] [CrossRef]
- Kang, B.S.; Pearton, S.J.; Chen, J.J.; Ren, F.; Johnson, J.W.; Therrien, R.J.; Rajagopal, P.; Roberts, J.C.; Piner, E.L.; Linthicum, K.J. Electrical Detection of Deoxyribonucleic Acid Hybridization With AlGaN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2006, 89, 122102-1–122102-3. [Google Scholar] [CrossRef]
- Kang, B.S.; Ren, F.; Wang, L.; Lofton, C.; Tan, W.W.; Pearton, S.J.; Dabiran, A.; Osinsky, A.; Chow, P.P. Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility Transistors. Appl. Phys. Lett. 2005, 87, 023508-1–023508-3. [Google Scholar] [CrossRef]
- Tulip, F.S.; Eteshola, E.; Desai, S.; Mostafa, S.; Roopa, S.; Evans, B.; Islam, S.K. Direct Label-Free Electrical Immunodetection of Transplant Rejection Protein Biomarker in Physiological Buffer Using Floating Gate AlGaN/GaN High Electron Mobility Transistors. IEEE Trans. Nanobiosci. 2014, 13, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Sohn, B.K.; Kim, C.S. A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen. Sens. Actuator B Chem. 1996, 34, 435–440. [Google Scholar] [CrossRef]
- Palán, B.; Santos, F.V.; Karam, J.M.; Courtois, B.; Husák, M. New ISFET sensor interface circuit for biomedical applications. Sens. Actuator B Chem. 1999, 57, 63–68. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.H.; Ahn, J.; Seo, S.H.; Shin, J.K. Differential-Mode Biosensor Using Dual Extended-Gate Metal-Oxide-Semiconductor Field-Effect Transistors. Jpn. J. Appl. Phys. 2012, 51. [Google Scholar] [CrossRef]
- Cho, B.; Lim, B.; Lee, H.H.; Shin, J.K. Offset-Free Differential-Mode Bio-Sensing System Using Dual MOSFETs with Au Gate. Sens. Lett. 2011, 9, 157–161. [Google Scholar] [CrossRef]
- Yuan, H.; Kwon, H.C.; Yeom, S.H.; Kwon, D.H.; Kang, S.W. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection. Biosens. Bioelectron. 2011, 28, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Ahn, J.H.; Kim, J.Y.; Choi, J.M.; Lim, K.C.; Park, T.J.; Heo, N.S.; Lee, H.G.; Kim, J.W.; Choi, Y.K. CRP detection from serum for chip-based point-of-care testing system. Biosens. Bioelectron. 2013, 41, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Omland, T.; de Lemos, J.A.; Sabatine, M.S.; Christophi, C.A.; Rice, M.M.; Jablonski, K.A.; Tjora, S.; Domanski, M.J.; Gersh, B.J.; Rouleau, J.L.; et al. A Sensitive Cardiac Troponin T Assay in Stable Coronary Artery Disease. New Engl. J. Med. 2009, 361, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Petrovykh, D.Y.; Kimura-Suda, H.; Whitman, L.J.; Tarlov, M.J. Quantitative Analysis and Characterization of DNA Immobilized on Gold. J. Am. Chem. Soc. 2003, 125, 5219–5226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, W. AlGaN/GaN FET for DNA hybridization detection. Phys. Status Solidi A Appl. Mater. 2011, 208, 1623–1625. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, J.E.; Shin, J.K.; Kim, P.K.; Lim, G.; Shoji, S. An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuator B Chem. 2006, 117, 488–494. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.H.; Bae, M.; Jo, S.-H.; Shin, J.-K.; Son, D.H.; Won, C.-H.; Jeong, H.-M.; Lee, J.-H.; Kang, S.-W. AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein. Sensors 2015, 15, 18416-18426. https://doi.org/10.3390/s150818416
Lee HH, Bae M, Jo S-H, Shin J-K, Son DH, Won C-H, Jeong H-M, Lee J-H, Kang S-W. AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein. Sensors. 2015; 15(8):18416-18426. https://doi.org/10.3390/s150818416
Chicago/Turabian StyleLee, Hee Ho, Myunghan Bae, Sung-Hyun Jo, Jang-Kyoo Shin, Dong Hyeok Son, Chul-Ho Won, Hyun-Min Jeong, Jung-Hee Lee, and Shin-Won Kang. 2015. "AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein" Sensors 15, no. 8: 18416-18426. https://doi.org/10.3390/s150818416