The Development of Love Wave-Based Humidity Sensors Incorporating Multiple Layers
<p>Schematic of the considered Love wave device and coordinate system.</p> "> Figure 2
<p>Mass velocity sensitivities (<b>a</b>) and mass loss sensitivities (<b>b</b>) of Love sensor incorporating a single PVA layer (solid lines) and PVA/SiO<sub>2</sub> layers (dashed lines).</p> "> Figure 3
<p>Experimental setup: (1) test box; (2) network analyzer; (3) Love wave device; (4) standard hygrometer; (5) probe of the hygrometer; (6) inlet/outlet for silica particles and wet sponges.</p> "> Figure 4
<p>Frequency shifts <span class="html-italic">versus</span> relative humidity for ST-90°X quartz substrate/PVA and ST-90°X quartz substrate/SiO<sub>2</sub>/PVA devices.</p> "> Figure 5
<p>Insertion loss shifts <span class="html-italic">versus</span> relative humidity for ST-90°X quartz substrate/PVA and ST-90°X quartz substrate/SiO<sub>2</sub>/PVA devices.</p> ">
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Love Waves in a Two Layer Coated Structure
2.2. Adsorption Mechanism
3. Experimental Verification
3.1. Fabrication of Love Wave Devices
3.2. Experimental Setup
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, C.; Lee, G. Humidity Sensors: A Review. Sens. Lett. 2005, 3, 1–14. [Google Scholar] [CrossRef]
- Shiokawa, S.; Kondoh, J. Surface Acoustic Wave Sensors. Jap. J. Appl. Phys. 2004, 43, 2799–2802. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G. Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sens. Actuators B Chem. 2000, 68, 300–306. [Google Scholar] [CrossRef]
- Rimeikaa, R.; Čiplys, D.; Poderys, V.; Rotomskis, R.; Shur, M.S. Fast-response surface acoustic wave humidity sensor based on hematoporphyrin film. Sens. Actuators B Chem. 2009, 137, 592–596. [Google Scholar] [CrossRef]
- Li, Y.; Deng, C.; Yang, M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sens. Actuators B Chem. 2012, 165, 7–12. [Google Scholar] [CrossRef]
- Gizeli, E.; Stevenson, A.C.; Goddard, N.J.; Lowe, C.R. A novel Love-plate acoustic sensor utilizing polymer overlayers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Lubking, G.W.; Vellekoop, M.J.; Venema, A. Love waves for (bio)chemical sensing in liquids. In Proceedings of the IEEE Ultrasonics Symposium, Tucson, AZ, USA, 20–23 October 1992; pp. 281–285.
- Du, J.; Harding, G.L. A multilayer structure for Love mode acoustic sensor. Sens. Actuators A Phys. 1998, 65, 152–159. [Google Scholar] [CrossRef]
- Harding, G.L.; Du, J. Design and properties of quartz based Love wave acoustic sensors incorporating silicon dioxide and PMMA guiding layers. Smart Mater. Struct. 1997, 6, 716–720. [Google Scholar] [CrossRef]
- Du, J.; Harding, G.L.; Ogilvy, J.A.; Dencher, P.R.; Lake, M. A study of Love wave acoustic sensors. Sens. Actuators A Phys. 1996, 56, 211–219. [Google Scholar] [CrossRef]
- Du, J.; Harding, G.L.; Collings, A.F.; Dencher, P.R. An experimental study of Love wave acoustic sensors operating in liquids. Sens. Actuators A Phys. 1997, 60, 54–61. [Google Scholar] [CrossRef]
- Harding, G.L.; Du, J.; Dencher, P.R.; Barnett, D.; Howe, E. Love wave acoustic immune sensor operating in liquid. Sens. Actuators A Phys. 1997, 61, 279–286. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.I.; Martin, F. Theoretical mass sensitivity of Love wave and layer guided acoustic plate mode sensors. J. Appl. Phys. 2002, 91, 9701–9710. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.I.; Martin, F. Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors with viscoelastic guiding layers. J. Appl. Phys. 2003, 93, 675–690. [Google Scholar] [CrossRef]
- Liu, J.; He, S. Theoretical analysis on Love waves in a layered structure with a piezoelectric substrate and multiple elastic layers. J. Appl. Phys. 2010, 107. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Lu, Y.; He, S. Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer. Smart Mater. Struct. 2013. [Google Scholar] [CrossRef]
- Liu, J. A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate. Smart Mater. Struct. 2014. [Google Scholar] [CrossRef]
- Liu, J. A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity. AIP Adv. 2014, 4. [Google Scholar] [CrossRef]
- Auld, B.A. Acoustic Fields and Waves in Solids; John Wiley: New York, NY, USA, 1973. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Anderson, R.B. Modifications of the Brunauer, Emmett and Teller Equation. J. Am. Chem. Soc. 1946, 68, 686–691. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption. Sensors 2014, 14, 6844–6853. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L. Dynamics and response of a humidity sensor based on a Love wave device incorporating a polymeric layer. Sens. Actuators B Chem. 2014, 204, 50–56. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, J.; He, S. The Development of Love Wave-Based Humidity Sensors Incorporating Multiple Layers. Sensors 2015, 15, 8615-8623. https://doi.org/10.3390/s150408615
Wang L, Liu J, He S. The Development of Love Wave-Based Humidity Sensors Incorporating Multiple Layers. Sensors. 2015; 15(4):8615-8623. https://doi.org/10.3390/s150408615
Chicago/Turabian StyleWang, Lijun, Jiansheng Liu, and Shitang He. 2015. "The Development of Love Wave-Based Humidity Sensors Incorporating Multiple Layers" Sensors 15, no. 4: 8615-8623. https://doi.org/10.3390/s150408615