Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects
"> Figure 1
<p>Spectral response functions for the Sentinel-2 MSI (solid, [<a href="#B1-remotesensing-09-01325" class="html-bibr">1</a>]) and MODIS (dashed, [<a href="#B23-remotesensing-09-01325" class="html-bibr">23</a>]) red to NIR wavelength bands. The MSI red-edge bands 5 (705 nm), band 6 (740 nm), and band 7 (783 nm) are shown in black. The MSI bands (in order of increasing central wavelength) are band 4 (665 nm), band 5 (705 nm), band 6 (740 nm), band 7 (783 nm), band 8 (842 nm), and band8A (865 nm). The MODIS red (645 nm) and NIR (858 nm) bands are shown by the dashed lines.</p> "> Figure 2
<p>Predicted reflectance (derived as 1) using the fixed global annual POLDER NIR 865 nm (blue), red-edge 765 nm (black), and red 670 nm (red) BRDF model parameters (<a href="#remotesensing-09-01325-t002" class="html-table">Table 2</a>) and using the interpolated POLDER red-edge 765 nm (orange) BRDF model parameters. Shown for MODIS or POLDER ± 60° view zenith angle range and for three fixed solar zenith angles (0°, 30°, 45°).</p> "> Figure 3
<p><span class="html-italic">c</span>-factors (derived as 2) using the fixed global annual POLDER NIR 865 nm (blue), red-edge 765 nm (black), and red 670 nm (red) BRDF model parameters (<a href="#remotesensing-09-01325-t002" class="html-table">Table 2</a>) and using the interpolated POLDER red-edge 765 nm (orange) BRDF model parameters. Shown for Sentinel-2 MSI ± 10.3° view zenith angle range and for three fixed solar zenith angles (0°, 30°, 45°). The orange and blue lines are almost identical and the blue lines are plotted over the orange lines.</p> "> Figure 4
<p>Sentinel-2A MSI red-edge surface reflectance differences in the Southern Africa January swath image overlap zones plotted against view zenith for a total of 6,600,685 pairs of forward and back scatter surface reflectance values. The plot colors show the relative frequency of occurrence of similar difference values (with a log2 scale). The solid lines show ordinary least squares (OLS) linear regression fits of these data (see <a href="#remotesensing-09-01325-t004" class="html-table">Table 4</a>). Results shown for MSI bands 5 (705 nm), 6 (740 nm), and 7 (783 nm).</p> "> Figure 5
<p>Same as <a href="#remotesensing-09-01325-f004" class="html-fig">Figure 4</a> but for the April data, a total of 10,656,197 pairs of forward and back scatter surface reflectance values were considered. The solid lines show ordinary least squares (OLS) linear regression fits of these data (see <a href="#remotesensing-09-01325-t004" class="html-table">Table 4</a>).</p> "> Figure 6
<p>Sentinel-2A MSI red-edge surface NBAR differences in the Southern Africa January swath image overlap zones plotted against view zenith for a total of 6,600,685 pairs of forward and back scatter surface NBAR values. The plot colors show the relative frequency of occurrence of similar difference values (with a log2 scale). The solid lines show ordinary least squares (OLS) linear regression fits of these data (see <a href="#remotesensing-09-01325-t006" class="html-table">Table 6</a>). Results shown for MSI bands 5 (705 nm), 6 (740 nm), and 7 (783 nm).</p> "> Figure 7
<p>Same as <a href="#remotesensing-09-01325-f006" class="html-fig">Figure 6</a> but for the April data, a total of 10,656,197 pairs of forward and back scatter surface NBAR values were considered. The solid lines show ordinary least squares (OLS) linear regression fits of these data (see <a href="#remotesensing-09-01325-t006" class="html-table">Table 6</a>).</p> ">
Abstract
:1. Introduction
2. Data
2.1. Sentinel-2A Data
2.2. Fixed Global Annual MODIS Red and NIR BRDF Model Parameters
2.3. Spectral BRDF Parameters Derived from the POLDER BRDF Database
3. Methodology
3.1. Sentinel-2 MSI Red-Edge Band NBAR Derivation
3.2. Derivation of Sentinel-2 MSI Red-Edge Band BRDF Spectral Model Parameters by Linear Interpolation between the Red and NIR MODIS BRDF Spectral Model Parameters
3.3. Quantification of Sentinel-2 MSI Red-Edge Directional Reflectance Effects and Reduction of Directional Reflectance Effects in MSI Red-Edge NBAR
4. Results
4.1. Sentinel-2 MSI Red-Edge Band NBAR Derivation
4.2. Quantification of Sentinel-2 MSI Red-Edge Band Bi-Directional Reflectance Effects
4.3. Quantification of Sentinel-2A MSI Red-Edge Directional Reflectance Effect Reduction in the NBAR
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Biging, G.S.; Larrieu, M.R. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens. 2003, 41, 916–921. [Google Scholar]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2001, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Smith, K.; Steven, M.; Colls, J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 2004, 92, 207–217. [Google Scholar] [CrossRef]
- Oliva, P.; Martín, P.; Chuvieco, E. Burned area mapping with MERIS post-fire image. Int. J. Remote Sens. 2011, 32, 4175–4201. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, B.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2017, 199, 25–38. [Google Scholar] [CrossRef]
- Schaaf, C.; Gao, F.; Strahler, A.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Gao, F.; Schaaf, C.; Strahler, A.H.; Lucht, W. Using a multi-kernel least variance approach to retrieve and evaluate albedo from limited BRDF observations. Remote Sens. Environ. 2001, 76, 57–66. [Google Scholar] [CrossRef]
- Roy, D.P.; Lewis, P.; Schaaf, C.; Devadiga, S.; Boschetti, L. The Global impact of cloud on the production of MODIS bi-directional reflectance model based composites for terrestrial monitoring. IEEE Geosci. Remote Sens. Lett. 2006, 3, 452–456. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Breon, F.; Maignan, F. A BRDF–BPDF database for the analysis of Earth target reflectances. Earth Syst. Sci. Data 2017, 9, 31–45. [Google Scholar] [CrossRef]
- Kimes, D.S. Dynamics of directional reflectance factor distributions for vegetation canopies. Appl. Opt. 1983, 22, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Hapke, B.; DiMucci, D.; Nelson, R.; Smythe, W. The cause of the hot spot in vegetation canopies and soils: Shadow-hiding versus coherent backscatter. Remote Sens. Environ. 1996, 58, 63–68. [Google Scholar] [CrossRef]
- Skakun, S.; Roger, J.C.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. Int. J. Digit. Earth 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Li, Z.; Zhang, H.K.; Huang, H. Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology. Remote Sens. Environ. 2017. submitted. [Google Scholar]
- Müller-Wilm, U. Sen2Cor Configuration and User Manual. Available online: http://step.esa.int/thirdparties/sen2cor/2.3.0/%5BL2A-SUM%5D%20S2-PDGS-MPC-L2A-SUM%20%5B2.3.0%5D.pdf (accessed on 25 November 2016).
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Deschamps, P.; Breon, F.; Leroy, M.; Podaire, A.; Bricaud, A.; Buriez, J.; Seze, G. The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens. 1994, 32, 598–615. [Google Scholar] [CrossRef]
- Leroy, M.; Deuzé, J.L.; Bréon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanre, D.; Bouffies, S.; Chazette, P.; Roujean, J.L. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS. J. Geophys. Res. Atmos. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Jiao, Z.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.; Li, X. An anisotropic flat index (AFX) to derive BRDF archetypes from MODIS. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Breon, F.M. PARASOL Level-1 Product Data Format and User Manual. Available online: http://www.icare.univ-lille1.fr/projects_data/parasol/docs/Parasol_Level-1_format_latest.pdf (accessed on 13 December 2016).
- Sandmeier, S.R.; Strahler, A.H. BRDF laboratory measurements. Remote Sens. Rev. 2000, 18, 481–502. [Google Scholar] [CrossRef]
- Gao, F.; Jin, Y.; Schaaf, C.B.; Strahler, A.H. Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1269–1278. [Google Scholar]
- Sandmeier, S.R.; Middleton, E.M.; Deering, D.W.; Qin, W. The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization. J. Geophys. Res. Atmos. 1999, 104, 9547–9560. [Google Scholar] [CrossRef]
- Settle, J. On the dimensionality of multi-view hyperspectral measurements of vegetation. Remote Sens. Environ. 2004, 90, 235–242. [Google Scholar] [CrossRef]
- Doctor, K.Z.; Bachmann, C.M.; Gray, D.J.; Montes, M.J.; Fusina, R.A. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands. Appl. Opt. 2015, 54, F243–F255. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Teillet, P.; Slater, P.; Fedosejevs, G.; Jasinski, M.; Aase, J.; Moran, M. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery. Remote Sens. Environ. 1990, 32, 189–202. [Google Scholar] [CrossRef]
- Rahman, H.; Verstraete, M.M.; Pinty, B. Coupled surface-atmosphere reflectance (CSAR) model: 1. Model description and inversion on synthetic data. J. Geophys. Res. Atmos. 1993, 98, 20779–20789. [Google Scholar] [CrossRef]
- Pinty, B.; Widlowski, J.-L.; Gobron, N.; Verstraete, M.M.; Diner, D.J. Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity from MISR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1560–1573. [Google Scholar] [CrossRef]
- Deering, D.; Eck, T.; Otterman, J. Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterization. Agric. For. Meteorol. 1990, 52, 71–93. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.-L. Considerations in the parametric modeling of BRDF and Albedo from multiangular satellite sensor observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Samain, O.; Roujean, J.L.; Geiger, B. Use of a Kalman filter for the retrieval of surface BRDF coefficients with a time-evolving model based on the ECOCLIMAP land cover classification. Remote Sens. Environ. 2008, 112, 1337–1346. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Z.; Li, Z.; Erb, A.; Schaaf, C.B. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 36–49. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.; Mathieu, R.; Skidmore, A.K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 2015, 9, 094096. [Google Scholar] [CrossRef]
- Clevers, J.G.; Kooistra, L.; van den Brande, M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Hu, B.; Lucht, W.; Strahler, A.H. The interrelationship of atmospheric correction of reflectances and surface BRDF retrieval: A sensitivity study. IEEE Trans. Geosci. Remote Sens. 1999, 37, 724–738. [Google Scholar]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 2011. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Sobrino, J.A.; Fédèle, E. Analysis of directional effects on atmospheric correction. Remote Sens. Environ. 2013, 128, 276–288. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances. Remote Sens. Environ. 2017, 194, 127–145. [Google Scholar] [CrossRef]
MODIS Band (Center Wavelength) | |||
---|---|---|---|
1 (red, 645 nm) | 0.1690 | 0.0227 | 0.0574 |
2 (NIR, 858 nm) | 0.3093 | 0.0330 | 0.1535 |
POLDER Band | |||
---|---|---|---|
490 nm | 0.0708 | 0.0120 | 0.0547 |
565 nm | 0.1039 | 0.0171 | 0.0680 |
670 nm | 0.1216 | 0.0193 | 0.0602 |
765 nm | 0.2598 | 0.0369 | 0.1531 |
865 nm | 0.2907 | 0.0410 | 0.1611 |
1020 nm | 0.3201 | 0.0471 | 0.1611 |
Sentinel-2 Red-Edge Band (Center Wavelength) | |||
---|---|---|---|
5 (705 nm) | 0.2085 | 0.0256 | 0.0845 |
6 (740 nm) | 0.2316 | 0.0273 | 0.1003 |
7 (783 nm) | 0.2599 | 0.0294 | 0.1197 |
Sentinel-2 Red-Edge Band | January | April | ||||
---|---|---|---|---|---|---|
OLS Equation | OLS (p-Value) | B-F Difference | OLS Equation | OLS (p-Value) | B-F Difference | |
705 nm | Δ = −0.0029 θv + 0.0018 | 0.7271 (<0.0001) | 0.0698 | Δ = −0.0010 θv + 0.0003 | 0.2877 (<0.0001) | 0.0226 |
740 nm | Δ = −0.0033 θv + 0.0048 | 0.7379 (<0.0001) | 0.0787 | Δ = −0.0015 θv + 0.0015 | 0.4014 (<0.0001) | 0.0352 |
783 nm | Δ = −0.0033 θv + 0.0051 | 0.7086 (<0.0001) | 0.0776 | Δ = −0.0014 θv + 0.0015 | 0.3311 (<0.0001) | 0.0323 |
Sentinel-2 Red-Edge Band | January | April | ||
---|---|---|---|---|
705 nm | 0.0314 | 14.928 | 0.0133 | 10.487 |
740 nm | 0.0358 | 14.283 | 0.0186 | 9.699 |
783 nm | 0.0356 | 13.300 | 0.0182 | 9.378 |
Sentinel-2 Red-Edge Band | January | April | ||||
---|---|---|---|---|---|---|
OLS Equation | OLS (p-Value) | B-F Difference | OLS Equation | OLS (p-Value) | B-F Difference | |
705 nm | Δ =−0.0009 θv + 0.0017 | 0.2059 (<0.0001) | 0.0217 | Δ =−0.0001 θv − 0.0003 | 0.0018 (<0.0001) | 0.0015 |
740 nm | Δ =−0.0010 θv + 0.0032 | 0.2061 (<0.0001) | 0.0237 | Δ =−0.0003 θv + 0.0015 | 0.0218 (<0.0001) | 0.0063 |
783 nm | Δ =−0.0008 θv + 0.0032 | 0.1300 (<0.0001) | 0.0191 | Δ =−0.0000 θv + 0.0016 | 0.0002 (<0.0001) | 0.0006 |
Sentinel-2 Red-Edge Band | January | April | ||
---|---|---|---|---|
705 nm | 0.0150 | 7.480 | 0.0104 | 9.735 |
740 nm | 0.0163 | 6.646 | 0.0123 | 9.016 |
783 nm | 0.0157 | 5.973 | 0.0127 | 8.643 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, D.P.; Li, Z.; Zhang, H.K. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects. Remote Sens. 2017, 9, 1325. https://doi.org/10.3390/rs9121325
Roy DP, Li Z, Zhang HK. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects. Remote Sensing. 2017; 9(12):1325. https://doi.org/10.3390/rs9121325
Chicago/Turabian StyleRoy, David P., Zhongbin Li, and Hankui K. Zhang. 2017. "Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects" Remote Sensing 9, no. 12: 1325. https://doi.org/10.3390/rs9121325
APA StyleRoy, D. P., Li, Z., & Zhang, H. K. (2017). Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects. Remote Sensing, 9(12), 1325. https://doi.org/10.3390/rs9121325