An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling
"> Figure 1
<p>Location map of the study area. Pictures show detailed views of the sea rocky cliffs: (<b>a</b>) warning panel highlighting the geomorphological risk; and (<b>b</b>,<b>c</b>) examples of the main geomorphological features.</p> "> Figure 2
<p>The workflow, from unmanned aerial vehicle (UAV) photogrammetry to geomechanical finite element modeling for an assessment of coastal rocky cliffs stability (GCP: ground control point; SfM: structure from motion; FEM: finite element modeling; TIN: triangulated irregular network).</p> "> Figure 3
<p>Steps in the generation and validation of mesh surface for geomechanical modeling for a sample portion of the investigated sea cliff.</p> "> Figure 4
<p>Representation of points spatial distribution over a limited portion of the sea cliff (<b>a</b>); and after simplification with: standard (<b>b</b>); and curvature (<b>c</b>) based methodologies at 4% of the full resolution. Point distributions were reported for the area included in the black rectangle of <a href="#remotesensing-09-01235-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 5
<p>(<b>a</b>) Point cloud of the whole extent of the surveyed area through a panoramic view; (<b>b</b>,<b>c</b>) details of some portions extrapolated from the point cloud; (<b>d</b>) adopted solution for GNSS antenna set-up; and (<b>e</b>) the airframe used.</p> "> Figure 6
<p>Modifications of the original surface after decimations. The sector of sea cliff under investigation is represented in <a href="#remotesensing-09-01235-f004" class="html-fig">Figure 4</a>a (see also <a href="#remotesensing-09-01235-f005" class="html-fig">Figure 5</a>c and <a href="#remotesensing-09-01235-f001" class="html-fig">Figure 1</a>b to locate the area). The deviations from full resolution (mm) and the angle in draft (°) with respect to a vertical direction have been mapped on the shaded reference surface at 100%, 20%, 4%, and 1% degree of decimations. The decreasing number of triangles and file size are also reported for deviation analysis in addition to basic statistical parameters (av. = average; st. dev. = standard deviation). By selecting the angle in draft = 90°, the overhanging sectors are visible in red.</p> "> Figure 7
<p>FE model from three-dimensional surface decimated to the 1% of the full resolution: (<b>a</b>) solid model adopted to build the analysis domain; and (<b>b</b>) finite element discretization mesh.</p> "> Figure 8
<p>Contours of cumulated deviatoric strain calculated by the FE model using the surface model after decimation to the 1% of the full resolution: (<b>a</b>) 2D horizontal cross section (see section in 3D perspective in the box; and (<b>b</b>) 2D vertical cross-section.</p> "> Figure 9
<p>Contours of cumulated vertical displacements calculated by the FE model using the surface model after decimation to the 1% of the full resolution: (<b>a</b>) 3D perspective view; (<b>b</b>) vertical cross section; and (<b>c</b>) horizontal cross-section.</p> "> Figure 10
<p>FE model from three-dimensional surface decimated to the 4% of the full resolution: (<b>a</b>) portion of cliff surface modeled at finer resolution; (<b>b</b>) 3D FE model solid using the surface model after decimation to the 4% of the full resolution; and (<b>c</b>) finite element discretization mesh.</p> "> Figure 11
<p>Contours of cumulated deviatoric strain and cumulated displacement calculated after decimation to the 4% of the full resolution: (<b>a</b>) three-dimensional perspective; (<b>b</b>) 2D vertical cross-section of cumulated deviatoric strain; and (<b>c</b>) 2D vertical cross-section of cumulated displacement.</p> ">
Abstract
:1. Introduction
2. Study Area and Main Geological Setting
3. Methodology: The Combination of UAV Photogrammetry and Three-Dimensional Finite Elements
3.1. The Workflow
3.2. UAV Photogrammetry: Image Collection and Processing Strategy
3.3. Managing Surfaces: Meshing Strategy of Point Cloud
3.4. Three-Dimensional Finite Element Models for Geomechanical Analyses
4. Results
4.1. Point-Cloud Generation from UAV Images
4.2. Building and Validating TIN Surfaces at Changing Resolution
4.3. Finite Element Model of the Rock Cliff: Surface Importing, Model Construction and Main Results
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Corsini, A.; Castagnetti, C.; Bertacchini, E.; Rivola, R.; Ronchetti, F.; Capra, A. Integrating airborne and multi-temporal long-range terrestrial laser scanning with total station measurements for mapping and monitoring a compound slow moving rock slide. Earth Surf. Proc. Landf. 2013, 38, 1330–1338. [Google Scholar] [CrossRef]
- Assali, P.; Grussenmeyer, P.; Villemin, T.; Pollet, N.; Viguier, F. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. J. Struct. Geol. 2014, 66, 102–114. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Cawood, A.J.; Bond, C.E.; Howell, J.A.; Butler, R.W.; Totake, Y. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [Google Scholar] [CrossRef]
- Michoud, C.; Carrea, D.; Costa, S.; Derron, M.H.; Jaboyedoff, M.; Delacourt, C.; Maquaire, O.; Letortu, P.; Davidson, R. Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy. Landslides 2015, 12, 403–418. [Google Scholar] [CrossRef]
- Rosnell, T.; Honkavaara, E. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 2012, 12, 453–480. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Bryson, M.; Johnson-Roberson, M.; Murphy, R.J.; Bongiorno, D. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes. PLoS ONE 2013, 8, e73550. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Rupnik, E.; Nex, F.; Remondino, F. Oblique multi-camera systems-orientation and dense matching issues. In EuroCOW 2014, Proceedings of the European Calibration and Orientation Workshop, Castelldefels, Spain, 12–14 February 2014; The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences: Kreuztal, Germany, 2014; Volume XL-3/W1, pp. 107–114. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. J. Surv. Eng. 2016, 143, 04016025. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry–merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Genchi, S.A.; Vitale, A.J.; Perillo, G.M.; Delrieux, C.A. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery. Sensors 2015, 15, 3593–3609. [Google Scholar] [CrossRef] [PubMed]
- Warrick, J.A.; Ritchie, A.C.; Adelman, G.; Adelman, K.; Limber, P.W. New techniques to measure cliff change from historical oblique aerial photographs and Structure-from-Motion photogrammetry. J. Coast. Res. 2016, 33, 39–55. [Google Scholar] [CrossRef]
- Danzi, M.; Di Crescenzo, G.; Ramondini, M.; Santo, A. Use of unmanned aerial vehicles (UAVs) for photogrammetric surveys in rockfall instability studies. Rend. Online Soc. Geol. Ital. 2012, 24, 82–85. [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: a review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Giordan, D.; Manconi, A.; Facello, A.; Baldo, M.; Dell’Anese, F.; Allasia, P.; Dutto, F. Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat. Hazards Earth Syst. Sci. 2015, 15, 163–169. [Google Scholar] [CrossRef]
- Dewez, T.J.B.; Leroux, J.; Morelli, S. Cliff collapse hazard from repeated multicopter UAV acquisitions: return on experience. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B5. [Google Scholar] [CrossRef]
- Piras, M.; Taddia, G.; Forno, M.G.; Gattiglio, M.; Aicardi, I.; Dabove, P.; Lo Russo, S.; Lingua, A. Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps. Geomat. Nat. Hazards Risk 2017, 8, 137–149. [Google Scholar] [CrossRef]
- Quinn, J.D.; Rosser, N.J.; Murphy, W.; Lawrence, J.A. Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling. Geomorphology 2010, 120, 107–122. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Migliazza, M.; Roncella, R.; Rabbi, E. Rock slopes risk assessment based on advanced geostructural survey techniques. Landslides 2011, 8, 221–231. [Google Scholar] [CrossRef]
- Martino, S.; Mazzanti, P. Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: the Mt. Pucci case study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Tomás, R.; Abellán, A. Characterization of rock slopes through slope mass rating using 3D point clouds. Int. J. Rock Mech. Min. Sci. 2016, 84, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Abellan, A.; Derron, M.H.; Jaboyedoff, M. Use of 3D Point Clouds in Geohazards. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef]
- Balek, J.; Blahůt, J. A critical evaluation of the use of an inexpensive camera mounted on a recreational unmanned aerial vehicle as a tool for landslide research. Landslides 2017, 14, 1217–1224. [Google Scholar] [CrossRef]
- Largaiolli, T.; Martinis, B.; Mozzi, G.; Nardin, M.; Rossi, D.; Ungaro, S. Note illustrative della Carta Geologica d'Italia, Foglio 214, Gallipoli; Servizio Geologico d’Italia: Rome, Italy, 1969; 64p. (In Italian) [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Research Council: Washington, DC, USA, 1996; pp. 36–75, 247. [Google Scholar]
- Andriani, G.F.; Walsh, N. Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy). In Natural Stone Resources for Historical Monuments—Geological Society Special Publication (Book 333); Prikryl, R., Smith, B.J., Eds.; Geological Society of London: London, UK, 2010; pp. 129–141. [Google Scholar]
- International Society of Rock Mechanics. Suggested methods for the quantitative descriptions of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. 1978, 15, 319–368. [Google Scholar]
- Ciantia, M.O.; Castellanza, R.; Di Prisco, C. Experimental study on the water-induced weakening of calcarenites. Rock Mech. Rock Eng. 2015, 48, 441–461. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. The effects of wetting and drying, and marine salt crystallization on calcarenite rocks used as building material in historic monuments. In Building Stone Decay: from Diagnosis to Conservation—Geological Society Special Publication (Book 271); Prikryl, R., Smith, B.J., Eds.; Geological Society of London: London, UK, 2007; pp. 179–188. [Google Scholar]
- Parise, M.; Lollino, P. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 2011, 134, 132–143. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM Trans. Graph. 2006, 25, 835–846. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. 2010, 32, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, B. Sur la sphère vide. Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk 1934, 7, 793–800. [Google Scholar]
- Schumaker, L. Triangulations in CAGD. IEEE Comput. Graph. 1993, 13, 47–52. [Google Scholar] [CrossRef]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Mesh optimization. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, NY, USA, 1993; pp. 19–26. [Google Scholar] [CrossRef]
- Lindstrom, P.; Turk, G. Fast and memory efficient polygonal simplification. In Proceedings of the IEEE Visualization ’98, Research Triangle Park, NC, USA, 18–23 October 1998; pp. 279–286. [Google Scholar] [CrossRef]
- Lisjak, A.; Grasselli, G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 2014, 6, 301–314. [Google Scholar] [CrossRef]
- Ciantia, M.O.; Castellanza, R.; Di Prisco, C.; Lollino, P.; Fernandez-Merodo, J.A.; Frigerio, G. Evaluation of the stability of underground cavities in calcarenite interacting with buildings using numerical analysis. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 8, pp. 65–69. [Google Scholar]
- Lollino, P.; Andriani, G.F. Role of brittle behaviour of soft calcarenites under low confinement: laboratory observations and numerical investigation. Rock Mech. Rock Eng. 2017, 50, 1863–1882. [Google Scholar] [CrossRef]
- Fazio, N.L.; Perrotti, M.; Lollino, P.; Parise, M.; Vattano, M.; Madonia, G.; Di Maggio, C. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Eng. Geol. 2017, 228, 301–311. [Google Scholar] [CrossRef]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef]
- Matsui, T.; San, K.C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils Found. 1992, 32, 59–70. [Google Scholar] [CrossRef]
- Fookes, P.G.; Hawkins, A.B. Limestone weathering: Its engineering significance and a proposed classification scheme. Quart. J. Eng. Geol. 1988, 21, 7–31. [Google Scholar] [CrossRef]
- Stead, D.; Eberhardt, E.; Coggan, J.; Benko, B. Advanced numerical techniques in rock slope stability analysis: applications and limitations. In International Conference on Landslides: Causes, Impacts and Countermeasures 2001; VGE: Davos, Switzerland, 2001; pp. 615–624. [Google Scholar]
- Stead, D.; Coggan, J. Numerical modeling of rock-slope instability. In Landslides: Types, Mechanisms and Models; Clague, J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 144–158. [Google Scholar]
- Campbell, R.J.; Flynn, P.J. A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 2001, 81, 166–210. [Google Scholar] [CrossRef]
- Dimas, E.; Briassoulis, D. 3D geometric modelling based on NURBS: A review. Adv. Eng. Softw. 1999, 30, 741–751. [Google Scholar] [CrossRef]
E′ (MPa) | ν’ | γ (kN/m3) | c′ (kPa) | ϕ′ (°) | σt (kPa) |
---|---|---|---|---|---|
100 | 0.3 | 18 | 150 | 27 | 120 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. https://doi.org/10.3390/rs9121235
Mancini F, Castagnetti C, Rossi P, Dubbini M, Fazio NL, Perrotti M, Lollino P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sensing. 2017; 9(12):1235. https://doi.org/10.3390/rs9121235
Chicago/Turabian StyleMancini, Francesco, Cristina Castagnetti, Paolo Rossi, Marco Dubbini, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino. 2017. "An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling" Remote Sensing 9, no. 12: 1235. https://doi.org/10.3390/rs9121235