Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence
"> Figure 1
<p>Modular architecture of the developed <span class="html-italic">ALG</span> software tool.</p> "> Figure 2
<p>Screen-capture of the <span class="html-italic">ALG</span> (v1.0) tool at the LUT key input parameters configuration step.</p> "> Figure 3
<p>Reference Lambertian surface reflectance (<b>left</b>) and isotropic SIF emission (<b>right</b>).</p> "> Figure 4
<p>Approach for evaluating the impact of approximations in aerosol properties in FLORIS atmospherically-corrected surface reflectance.</p> "> Figure 5
<p>Relative error threshold in apparent reflectance in the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B (<b>left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) regions based on an increase of fluorescence of 0.2 mW·m<math display="inline"> <semantics> <mrow> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>·</mo> </mrow> </semantics> </math>sr<math display="inline"> <semantics> <mrow> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>·</mo> </mrow> </semantics> </math>nm<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>.</p> "> Figure 6
<p>Global sensitivity analysis for the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B <b>(left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) spectral regions.</p> "> Figure 7
<p>Mean relative error in surface apparent reflectance derived from the <span class="html-italic">retrieval</span> dataset and its four subsets (see <a href="#remotesensing-09-00675-t004" class="html-table">Table 4</a>) within the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B (<b>left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) spectral regions. The figure legend includes the ranging key input aerosol variables within each subset.</p> "> Figure 8
<p>Relative error in apparent reflectance, filtered by aerosol type, derived from the complete <span class="html-italic">retrieval</span> dataset within the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B (<b>left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) spectral regions. The following error statistic are provided: median (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo stretchy="false">|</mo> </mstyle> </mrow> </semantics> </math>), average (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo>∗</mo> </mstyle> </mrow> </semantics> </math>), 25th and 75th percentiles (blue boxes) and extreme min/max values (horizontal dashed lines). The vertical dashed line indicates the error threshold in apparent reflectance within each O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math> absorption. Notice that aerosol types with same name are indentified as MODTRAN (M) or OPAC (O).</p> "> Figure 9
<p>Relative error in apparent reflectance, filtered by AOT<math display="inline"> <semantics> <msub> <mrow/> <mn>550</mn> </msub> </semantics> </math>, derived from the complete <span class="html-italic">retrieval</span> dataset within the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B (<b>left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) spectral regions. The following error statistics are provided: median (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo stretchy="false">|</mo> </mstyle> </mrow> </semantics> </math>), average (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo>∗</mo> </mstyle> </mrow> </semantics> </math>), 25th and 75th percentiles (blue boxes) and extreme min/max values (horizontal dashed lines). The vertical dashed line indicates the error threshold in apparent reflectance within each O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math> absorption.</p> "> Figure 10
<p>Default OPAC aerosols’ optical properties. (<b>Left</b>) normalized extinction coefficient (circles) and best fitting to Ångström law (dashed lines). (<b>Right</b>) wavelength dependency of SSA.</p> "> Figure 11
<p>(<b>Left</b>) phase function at 700 nm (solid lines) and best fitting to HG approximation (dashed lines). (<b>Right</b>) wavelength dependency of asymmetry parameter.</p> "> Figure 12
<p>Mean error statistic in retrieved SIF, filtered by AOT<math display="inline"> <semantics> <msub> <mrow/> <mn>550</mn> </msub> </semantics> </math>, after the atmospheric correction of the <span class="html-italic">reference</span> dataset derived from the complete <span class="html-italic">retrieval</span> dataset within the O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-B (<b>left</b>) and O<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>-A (<b>right</b>) spectral regions. The following error statistic are provided: median (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo stretchy="false">|</mo> </mstyle> </mrow> </semantics> </math>), average (<math display="inline"> <semantics> <mrow> <mstyle mathcolor="red"> <mo>∗</mo> </mstyle> </mrow> </semantics> </math>), 25th and 75th percentiles (blue boxes) and extreme min/max values (horizontal dashed lines). The vertical dashed line indicates the error threshold in SIF.</p> ">
Abstract
:1. Introduction
2. Aerosol Optical and Physical Properties
3. Materials and Methods
3.1. Atmospheric Look-Up Table Generator
- Define input key atmospheric variables including among others: aerosol types (default and OPAC user-defined), aerosol vertical distribution in the boundary layer (model default or exponential function), phase function (Mie or HG), spectral dependency of aerosol extinction (model default or Ångström exponent), SSA (model default or spectrally constant).
- Define input geometric conditions such as viewing and illumination zenith/azimuth angles, surface height and sensor altitude.
- Set the spectral range and resolution of the output data at non-contiguous spectral intervals.
- Atmospheric path radiance ()
- At-surface direct and diffuse solar irradiance ( and ).
- Target-to-sensor direct and diffuse transmittance ( and ).
- Spherical albedo (S).
3.2. Description of Simulated Datasets
- A single Ångström Law with spectrally-invariant Ångström exponent reproduces the effective spectral dependency of the extinction coefficient of both fine and coarse modes in the boundary layer and troposphere.
- The aerosol scattering phase function is modeled by the HG approximation with a spectrally-invariant asymmetry parameter.
- Different aerosol types have a low variability of values and spectral dependency of the SSA [17] and, therefore, it is considered to be spectrally-invariant in the 680–775 nm region.
- For spaceborne measurements, it is considered that the aerosol vertical distribution has a lower impact in TOA radiance than the caused by the variability of AOT, Ångström exponent, asymmetry parameter and SSA. Thus, we assume that a predefined aerosol vertical distribution is representative of the net radiometric effect of most vertical distributions.
3.3. Data Analysis
- In the reference dataset, the retrieved surface apparent reflectance corresponds to an ideal atmospheric correction algorithm from perfectly known atmospheric conditions.
- In the retrieval dataset, the retrieved surface apparent reflectance corresponds to the actual product of an atmospheric correction algorithm. The best matching combinations (j) are taken from the estimated atmospheric conditions from the first step (i.e., atmospheric characterization). The apparent reflectance will be later used to retrieve SIF emission through spectral decomposition techniques ([47]).
- We calculated the mean relative error, i.e., the average for all the samples in the reference dataset, after the atmospheric correction and compared it with the relative error threshold shown in Figure 5. This mean relative error is calculated for the surface apparent reflectance retrieved using the complete retrieval dataset and its four subsets (see Table 4). Through this analysis, we evaluated the overall impact of the various aerosol properties on the atmospheric correction.
- We filtered the relative error in apparent reflectance, averaged within each O absorption, as a function of the key input variables of the reference dataset. Through this analysis, we determined in more detail the source of errors in the atmospheric correction of the reference dataset using the complete retrieval dataset.
4. Results
4.1. Relative Contribution of Aerosol Parameters in FLORIS TOA Radiance
- The non-isotropy of the aerosol phase function (evaluated through the HG asymmetry parameter) has indeed the largest contribution (50–60%) in the TOA radiance. Particularly, since aerosol scattering is higher at shorter wavelengths, the contribution of the aerosol phase function is higher in all spectral channels within the O-B and at the bottom of the O-A band (∼761 nm).
- The AOT is the second driving variable, particularly outside the O-A absorption band and on the secondary absorptions (762–770 nm).
- The remaining sensitivity is dominated by the SSA with an influence of 20% in the O-B and 40% in the O-A spectral regions outside the absorption bands. The influence of the SSA is reduced to 10–20% inside the absorption bands.
- The spectral dependency of the extinction coefficient (evaluated through the Ångström exponent) has lower impact than AOT, SSA and g in both O regions, particularly inside the O-B absorption band.
- The aerosol vertical distribution, evaluated through the Z and parameters, has a residual influence on the TOA radiance.
4.2. Apparent Reflectance Error Analysis Within Each O Absorption Band
4.3. Retrieved Key Aerosol Optical Properties
- Ångström exponent: the poor accuracy (0.6 average error) and the high dispersion (precision between 0.3 and 0.6) of the retrieved Ångström exponent for all aerosol types are noteworthy. This supports the results of the conducted GSA, i.e., that the Ångström exponent has a secondary order influence on the variability of the TOA radiance in the O wavelength range and thus the difficulty to derive its value just using FLORIS instrument. The low precision of the retrieved Ångström exponent indicates that this parameter has been used to compensate for variations on other aerosol optical properties (e.g., phase function and SSA).
- HG asymmetry parameter: we observe that an effective and spectrally-invariant HG asymmetry parameter of 0.68 ± 0.04 reproduces, overall, the main scattering processes related to the phase function. This indicates that the effect of aerosol scattering in the at-sensor TOA radiance is more related to illumination and observation geometry than to the aerosol type. Consequently, the variability of Mie phase functions implemented in the reference dataset can be compensated with an effective value of the HG asymmetry parameter for the given observation/illumination geometry. Though the HG approximation with an effective spectrally-invariant asymmetry parameter might be suitable within the O-B spectral region, it plays a more important role inside the O-A absorption band, which causes higher errors in apparent reflectance.
- Single scattering albedo: as with the retrieved AOT, the retrieved values of SSA are in agreement (within the standard deviation) with the reference SSA values. This is true except for OPAC’s urban aerosol, which overestimates the SSA with an error of 0.06 ± 0.05, in agreement with the higher apparent reflectance error values within the O-B spectral region seen in Figure 8 (left).
4.4. Propagation of Atmospheric Correction Errors Into Retrieved SIF within Each O Absorption Band
5. Discussion
5.1. Interpreting Atmospheric Correction Results: Implications for FLEX/Sentinel-3 Tandem Mission
- Retrieving the aerosol phase function is important for an atmospheric correction scheme to enable compensating the variability of aerosol scattering in at-sensor TOA radiance. However, our results show that the spectrally-invariant HG approximation is adequate for the atmospheric correction of FLEX. Indeed, an effective HG asymmetry parameter describes the main scattering effects in TOA radiance associated to the phase function for aerosols of different type, which are mainly driven by the illumination/observation geometry.
- Our results indicate that only high SSA errors in highly absorbent aerosols (low SSA) might lead to an increase of the apparent reflectance error in the O-B spectral region but not in the O-A spectral region. In fact, as observed in the GSA results, the SSA has less influence inside of the O-A absorption band and thus errors in the estimation of SSA will also have less impact in the atmospheric correction and on the SIF retrieval.
- The AOT is retrieved with a low error despite the implemented multi-parametric atmospheric correction. This is important in view of the possibility to evaluate the quality of FLEX atmospheric correction through the comparison of retrieved AOT against reference values (e.g., from the Aerosol Robotic Network (AERONET) [1,12]).
- When filtered by aerosol type, the errors on the retrieved apparent reflectance indicate that the assumption of spectrally-invariant asymmetry parameter and SSA might not be fully sufficient for all aerosol types. This is particularly relevant at aerosol concentrations with an AOT > 0.2, where errors in the characterization and the parameterization of key aerosol optical properties are propagated to the retrieved apparent reflectance and SIF within the O-A spectral region.
- The error of atmospherically-corrected apparent reflectance is less affected by the variability of aerosol vertical profiles than the variability of aerosol optical properties. This was already observed in previous research [57] where, for nadir observations within the O-A absorption region, aerosol vertical distribution was only retrieved over targets with low surface reflectance and at aerosol load conditions of AOT > 0.3. We can therefore conclude that assuming a predefined aerosol vertical distribution in FLEX atmospheric correction will not lead to a large error contribution to the retrieved apparent reflectance and subsequent SIF retrieval.
- The low precision of the retrieved Ångström exponent indicates that, on the one hand, this parameter cannot be retrieved from the short spectral range of FLORIS data. It justifies the use of the wider spectral range covered by Sentinel-3 instruments in this part. On the other hand, we observed that fixing the Ångström exponent (e.g., by inversion from Sentinel-3 data) will not have a large impact on the atmospheric correction accuracy within the O absorption region. However, an error in the Ångström exponent may lead to errors in surface reflectance in a wider spectral range that will be propagated to errors in retrieved SIF, especially when using Spectral Fitting Methods [58].
5.2. New Opportunities for Atmospheric Simulation
- Forward simulation: The generation of synthetic satellite data has been an active research field since the late 80 s [68]. As shown in recent satellite mission simulators ([69,70,71]), the generation of synthetic TOA radiance scenes play an important role to assess a mission performance. Through its datasets, ALG can extend the current simulation capabilities of satellite mission simulators to generate synthetic scenes in a large variety of atmospheric conditions. In combination with satellite mission simulators, ALG would allow scientists and engineers validating and optimizing satellite data processing schemes.
- Sensitivity analysis: As demonstrated in our previous study [46] and exploited in this paper, ALG and global sensitivity analysis can be used to identify the most influential atmospheric variables affecting satellite radiance data, which would serve as a tool to design new passive optical instruments.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kokhanovsky, A.; Breon, F.M.; Cacciari, A.; Carboni, E.; Diner, D.; Di Nicolantonio, W.; Grainger, R.; Grey, W.; Höller, R.; Lee, K.H.; et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Res. 2007, 85, 372–394. [Google Scholar] [CrossRef]
- Schaepman, M.; Ustin, S.; Plaza, A.; Painter, T.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy-An assessment. Remote Sens. Environ. 2009, 113, S123–S137. [Google Scholar] [CrossRef]
- Gao, B.C.; Montes, M.; Davis, C.; Goetz, A. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009, 113, S17–S24. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.; Veroustraete, F.; Clevers, J.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Chavez, P., Jr. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Bernstein, L.; Jin, X.; Gregor, B.; Adler-Golden, S. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.; Felde, G.; Hoke, M.; Ratkowski, A.; Chetwynd, J.; Gardner, J.; Adler-Golden, S.; Matthew, M.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its applications and validation. In Proceedings of the IEEE International Coference on Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1414–1418. [Google Scholar]
- Richter, R.; Schläpfer, D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. Int. J. Remote Sens. 2002, 23, 2631–2649. [Google Scholar] [CrossRef]
- Guanter, L.; González-Sanpedro, M.D.C.; Moreno, J. A method for the atmospheric correction of ENVISAT/MERIS data over land targets. Int. J. Remote Sens. 2007, 28, 709–728. [Google Scholar] [CrossRef]
- North, P.; Brockmann, C.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J.; Preusker, R.; Regner, P. Meris/AATSR Synergy Algorithms for Cloud Screening, Aerosol Retrieval and Atmospheric Correction. In Proceedings of the 2nd MERIS/AATSR User Workshop, ESA, Frascati, Italy, 22–26 September 2008. [Google Scholar]
- Inness, A.; Baier, F.; Benedetti, A.; Bouarar, I.; Chabrillat, S.; Clark, H.; Clerbaux, C.; Coheur, P.; Engelen, R.; Errera, Q.; et al. The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys. 2013, 13, 4073–4109. [Google Scholar] [CrossRef]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Schläpfer, D.; Borel, C.; Keller, J.; Itten, K. Atmospheric precorrected differential absorption technique to retrieve columnar water vapor. Remote Sens. Environ. 1998, 65, 353–366. [Google Scholar] [CrossRef]
- Marbach, T.; Phillips, P.; Lacan, A.; Schlüssel, P. The Multi-Viewing, -Channel, -Polarisation Imager (3MI) of the EUMETSAT Polar System—Second Generation (EPS-SG) Dedicated to Aerosol Characterisation. In Proceedings of the SPIE 8889, Sensors, Systems, and Next-Generation Satellites XVII, 88890, Dresden, Germany, 16 October 2013; Volume 8889. [Google Scholar]
- Young, S.; Vaughan, M. The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: Algorithm description. J. Atmos. Ocean. Technol. 2009, 26, 1105–1119. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.; Smirnov, A.; Kaufman, Y.; King, M.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Mishra, A.; Koren, I.; Rudich, Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Duforêt, L.; Frouin, R.; Dubuisson, P. Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing. Appl. Opt. 2007, 46, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency (ESA). Report for Mission Selection: FLEX; ESA SP-1330/2 (2 Volume Series); European Space Agency: Noordwijk, The Netherlands, 2015. [Google Scholar]
- Drusch, M.; Moreno, J.; Del Bello, U.; Franco, F.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1–12. [Google Scholar] [CrossRef]
- Kraft, S.; Bézy, J.L.; Del Bello, U.; Berlich, R.; Drusch, M.; Franco, R.; Gabriele, A.; Harnisch, B.; Meynart, R.; Silvestrin, P. FLORIS: Phase A status of the fluorescence imaging spectrometer of the earth explorer mission Candidate FLEX. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8889. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Angström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’Neill, N.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annal. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Henyey, L.; Greenstein, J. Diffuse radiation in the galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Toon, O.; Pollack, J. A Global Average Model of Atmospheric Aerosols for Radiative Transfer Calculations. J. Appl. Meteorol. 1976, 15, 225–246. [Google Scholar] [CrossRef]
- Léon, J.F.; Derimian, Y.; Chiapello, I.; Tanré, D.; Podvin, T.; Chatenet, B.; Diallo, A.; Deroo, C. Aerosol vertical distribution and optical properties over M’Bour (16.96 W;14.39 N), Senegal from 2006 to 2008. Atmos. Chem. Phys. 2009, 9, 9249–9261. [Google Scholar] [CrossRef]
- Christensen, J. The Danish eulerian hemispheric model—A three-dimensional air pollution model used for the arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.; Acharya, P.; Bernstein, L.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.; Chetwynd, J.; Hoke, M.; et al. MODTRANTM 5: 2006 Update. In Proceedings of the SPIE 6233, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, 62331F, Orlando (Kissimmee), FL, USA, 8 May 2016; Volume 6233 II. [Google Scholar]
- Pedrós, R.; Gómez-Amo, J.; Marcos, C.; Utrillas, M.; Gandía, S.; Tena, F.; Lozano, J. AEROgui: A graphical user interface for the optical properties of aerosols. Bull. Am. Meteorol. Soc. 2014, 95, 1863–1871. [Google Scholar] [CrossRef]
- McKay, M.; Beckman, R.; Conover, W. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Huang, F.; Zhou, J.; Tao, J.; Tan, X.; Liang, S.; Cheng, J. PMODTRAN: A parallel implementation based on MODTRAN for massive remote sensing data processing. Int. J. Dig. Earth 2016, 9, 819–834. [Google Scholar] [CrossRef]
- Guanter, L.; Richter, R.; Kaufmann, H. On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. Int. J. Remote Sens. 2009, 30, 1407–1424. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.; Anderson, G.; Acharya, P.; Robertson, D.; Chetwynd, J.; Adler-Golden, S. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Thome, K.; Palluconi, F.; Takashima, T.; Masuda, K. Atmospheric correction of ASTER. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1199–1211. [Google Scholar] [CrossRef]
- Settle, J. On the dimensionality of multi-view hyperspectral measurements of vegetation. Remote Sens. Environ. 2004, 90, 235–242. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; Van Der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Verrelst, J.; van der Tol, C.; Magnani, F.; Sabater, N.; Rivera, J.; Mohammed, G.; Moreno, J. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sens. Environ. 2016, 176, 139–151. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Van Der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Van der Tol, C.; Berry, J.A.; Campbell, P.K.E.; Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. Biogeosci. 2014, 119, 2312–2327. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, A. Bayesian analysis of computer code outputs: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 1290–1300. [Google Scholar] [CrossRef]
- Verrelst, J.; Sabater, N.; Rivera, J.; Muñoz Marí, J.; Vicent, J.; Camps-Valls, G.; Moreno, J. Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sens. 2016, 8, 673. [Google Scholar] [CrossRef]
- Meroni, M.; Busetto, L.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W. Performance of Spectral Fitting Methods for vegetation fluorescence quantification. Remote Sens. Environ. 2010, 114, 363–374. [Google Scholar] [CrossRef]
- FLEX MAG; Drusch, M. FLEX Mission Requirements Document (MRD), v1.0; Technical Report; European Space Agency (ESA): Noordwijk, The Netherlands, 2011. [Google Scholar]
- Lynch, P.; Reid, J.; Westphal, D.; Zhang, J.; Hogan, T.; Hyer, E.; Curtis, C.; Hegg, D.; Shi, Y.; Campbell, J.; et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 2016, 9, 1489–1522. [Google Scholar] [CrossRef]
- Geogdzhayev, I.; Mishchenko, M.; Li, J.; Rossow, W.; Liu, L.; Cairns, B. Extension and statistical analysis of the GACP aerosol optical thickness record. Atmos. Res. 2015, 164–165, 268–277. [Google Scholar] [CrossRef]
- Corradini, S.; Cervino, M. Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case: SCIAMACHY nadir simulated measurements. J. Quant. Spectrosc. Radiat. Transf. 2006, 97, 354–380. [Google Scholar] [CrossRef]
- Davies, W.; North, P. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data. Atmos. Meas. Tech. 2015, 8, 1719–1731. [Google Scholar] [CrossRef]
- North, P.; Heckel, A. Sentinel-3 Optical Products and Algorithm Definition—SYN Algorithm Theoretical Basis Document; Technical Report; Swanswa University Prifysgol Abertawe: Swansea, UK, 2009. [Google Scholar]
- Emde, C.; Buras, R.; Mayer, B.; Blumthaler, M. The impact of aerosols on polarized sky radiance: Model development, validation, and applications. Atmos. Chem. Phys. 2010, 10, 383–396. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Weingartner, E.; Baltensperger, U. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 2013, 13, 10609–10631. [Google Scholar] [CrossRef]
- Di Biagio, C.; Boucher, H.; Caquineau, S.; Chevaillier, S.; Cuesta, J.; Formenti, P. Variability of the infrared complex refractive index of African mineral dust: Experimental estimation and implications for radiative transfer and satellite remote sensing. Atmos. Chemis. Phys. 2014, 14, 11093–11116. [Google Scholar] [CrossRef]
- Dubuisson, P.; Frouin, R.; Dessailly, D.; Duforêt, L.; Léon, J.F.; Voss, K.; Antoine, D. Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band. Remote Sens. Environ. 2009, 113, 1899–1911. [Google Scholar] [CrossRef]
- Cogliati, S.; Verhoef, W.; Kraft, S.; Sabater, N.; Alonso, L.; Vicent, J.; Moreno, J.; Drusch, M.; Colombo, R. Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sens. Environ. 2015, 169, 344–357. [Google Scholar] [CrossRef]
- Brazile, J.; Richter, R.; Schläpfer, D.; Schaepman, M.; Itten, K. Cluster versus grid for operational generation of ATCOR’s modtran-based look up tables. Parallel Comput. 2008, 34, 32–46. [Google Scholar] [CrossRef]
- Coorporation, O. PcModWin Official Webpage. Available online: http://www.ontar.com/Software/ProductDetails.aspx?item=PcModWin. (accessed on 27 December 2016).
- Spectral Sciences Incorporated. Official MODTRAN6 Webpage. Available online: http://modtran.spectral.com/ (accessed on 27 December 2016).
- ReSe Applications Schläpfer. MODO Official Webpage. Available online: http://www.rese.ch/products/modo/ ( accessed on 27 December 2016).
- Kotchenova, S.; Vermote, E.; Matarrese, R.; Klemm, F., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Kotchenova, S.; Vermote, E. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Kotchenova, S.; Vermote, E.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215–2226. [Google Scholar] [CrossRef] [PubMed]
- Seidel, F.; Kokhanovsky, A.; Schaepman, M. Fast and simple model for atmospheric radiative transfer. Atmos. Meas. Tech. 2010, 3, 1129–1141. [Google Scholar] [CrossRef]
- Callieco, F.; Dell’Acqua, F. A comparison between two radiative transfer models for atmospheric correction over a wide range of wavelengths. Int. J. Remote Sens. 2011, 32, 1357–1370. [Google Scholar] [CrossRef]
- Kerekes, J.P.; Landgrebe, D.A. Simulation of optical remote sensing systems. IEEE Trans. Geosci. Remote Sens. 1989, 27, 762–771. [Google Scholar] [CrossRef]
- Dangel, S.; Schaepman, M.; Brazile, J.; Petitcolin, F.; Su, B.; Briottet, X.; Gloor, M.; Moreno, J.; Itten, K. System architecture and design for a SPECTRA mission end-to-end simulator. In Proceedings of SPECTRA Workshop; Noordwijk, Netherlands, October 2003, Volume 1, Available online: http://www.geo.uzh.ch/microsite/rsl-documents/research/publications/other-sci-communications/2004_SPECTRASim_ESA_SD-4044586752/2004_SPECTRASim_ESA_SD.pdf.
- Segl, K.; Guanter, L.; Rogass, C.; Kuester, T.; Roessner, S.; Kaufmann, H.; Sang, B.; Mogulsky, V.; Hofer, S. EeteS—The EnMAP end-to-end simulation tool. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 522–530. [Google Scholar] [CrossRef]
- Vicent, J.; Sabater, N.; Tenjo, C.; Acarreta, J.; Manzano, M.; Rivera, J.; Jurado, P.; Franco, R.; Alonso, L.; Verrelst, J.; et al. FLEX End-to-End Mission Performance Simulator. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4215–4223. [Google Scholar] [CrossRef]
Variable Name | Min | Max |
---|---|---|
Ångström exponent () (-): | 0.05 | 2 |
HG parameter (g) (-): | 0.6 | 1 |
AOT (-): | 0.05 | 0.4 |
SSA (-): | 0.85 | 1 |
Aerosol scale height (Z) (km): | 2 | 99 |
Aerosol top height () (km): | 1 | 3 |
Variable Name | Values |
---|---|
Aerosol types (in the boundary layer): | MODTRAN: Rural, Maritime, Urban, Desert, Tropospheric. OPAC: Continental (clean, average, polluted), Urban, Desert, Maritime (clean, polluted, tropical), Arctic, Antarctic |
AOT (-): | 0.05, 0.12, 0.21, 0.3, 0.4 |
Aerosol scale height (Z) (km): | 2, 3.5, 8, 15, 99 |
Aerosol top height () (km): | 1, 1.5, 1.75, 2, 2.25, 2.5, 3 |
Variable Name | Min | Max |
---|---|---|
Ångström exponent () (-): | 0.05 | 2 |
HG parameter (g) (-): | 0.6 | 1 |
AOT (-): | 0.03 | 0.43 |
SSA (-): | 0.75 | 1 |
Aerosol vertical distribution: | MODTRAN mid-latitude summer |
Subset ID | Ranging Variables | Fixed Variables and Values | Comment |
---|---|---|---|
#1 | AOT | (1 ± 0.2), g (0.82 ± 0.02), SSA (0.93 ± 0.015) | Represents a typical atmospheric correction strategy fixing the aerosol type |
#2 | AOT, g, | SSA (0.93 ± 0.015) | Varying atmosphere with fixed SSA |
#3 | AOT, g, SSA | (1 ± 0.2) | Varying atmosphere with fixed spectral dependency of aerosol extinction |
#4 | AOT, , SSA | g (0.82 ± 0.02) | Varying atmosphere with fixed phase function |
Subset #1 | Subset #2 | Subset #3 | Subset #4 | Complete | |
---|---|---|---|---|---|
O-B | 19% | 51% | 63% | 11% | 85% |
O-A | 22% | 47% | 53% | 13% | 59% |
Reference AOT (-): | 0.05 | 0.12 | 0.21 | 0.30 | 0.40 |
---|---|---|---|---|---|
Retrieved AOT (-): | 0.04 ± 0.01 | 0.12 ± 0.03 | 0.24 ± 0.06 | 0.32 ± 0.06 | 0.38 ± 0.04 |
Aerosol Type | Ångström Exponent | HG Asymmetry Parameter | SSA |
---|---|---|---|
Cont. (clean) () | 0.8 ± 0.3 (1.42) | 0.67 ± 0.05 (0.82) | 0.94 ± 0.06 (0.96) |
Cont. (avg.) () | 0.8 ± 0.4 (1.42) | 0.68 ± 0.04 (0.82) | 0.92 ± 0.04 (0.90) |
Cont. (polluted) () | 0.9 ± 0.6 (1.45) | 0.67 ± 0.04 (0.79) | 0.88 ± 0.04 (0.87) |
Urban () | 0.9 ± 0.6 (1.43) | 0.69 ± 0.05 (0.81) | 0.84 ± 0.05 (0.78) |
Desert () | 0.8 ± 0.5 (0.15) | 0.69 ± 0.04 (0.91) | 0.91 ± 0.05 (0.92) |
Mar. (clean.) () | 0.9 ± 0.5 (0.09) | 0.67 ± 0.04 (0.88) | 0.96 ± 0.06 (0.997) |
Mar. (polluted) () | 0.9 ± 0.4 (0.35) | 0.68 ± 0.05 (0.87) | 0.95 ± 0.06 (0.98) |
Mar. (tropical) () | 0.9 ± 0.5 (0.05) | 0.66 ± 0.04 (0.88) | 0.96 ± 0.06 (0.998) |
Arctic () | 0.8 ± 0.6 (0.9) | 0.68 ± 0.04 (0.83) | 0.87 ± 0.04 (0.88) |
Antarctic () | 1.2 ± 0.5 (0.78) | 0.66 ± 0.04 (0.75) | 0.97 ± 0.05 (1) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicent, J.; Sabater, N.; Verrelst, J.; Alonso, L.; Moreno, J. Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence. Remote Sens. 2017, 9, 675. https://doi.org/10.3390/rs9070675
Vicent J, Sabater N, Verrelst J, Alonso L, Moreno J. Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence. Remote Sensing. 2017; 9(7):675. https://doi.org/10.3390/rs9070675
Chicago/Turabian StyleVicent, Jorge, Neus Sabater, Jochem Verrelst, Luis Alonso, and Jose Moreno. 2017. "Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence" Remote Sensing 9, no. 7: 675. https://doi.org/10.3390/rs9070675