Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping
"> Figure 1
<p>Location of the study area with (<b>a</b>) spectral measurement of calibration tarps; (<b>b</b>) ground control point (GCP) measurement with GPS; and (<b>c</b>) airborne RGB mosaic image acquired on 1 August 2016.</p> "> Figure 2
<p>Calibration models between field measured reflectance values and mean digital numbers (DNs) of the four tarps for blue, green, red, and NIR bands.</p> "> Figure 3
<p>Linear regression result between extracted and field measured crop height.</p> "> Figure 4
<p>Crop classification results based on the object-based method, using four-band airborne imagery and crop height.</p> "> Figure 5
<p>Crop classification map based on the maximum likelihood, using four-band airborne imagery with crop height.</p> "> Figure 6
<p>Crop mapping results based on the object-based method, using four-band airborne imagery without crop height.</p> "> Figure 7
<p>Crop classification map based on the maximum likelihood, using four-band airborne imagery without crop height.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Preprocessing
3.1. Airborne Imagery
3.2. Field Data
4. Methods
4.1. Calibration of Airborne Imagery
4.2. Extraction of Crop Height
4.3. Crop Identification Using Mosaic Imagery and Crop Height
4.4. Validation
4.4.1. Validation of Crop Height
4.4.2. Validation of Crop Identification
5. Results
5.1. Airborne Imagery Calibration
5.2. Crop Height Extraction
5.3. Crop Identification
6. Discussion
6.1. Crop Mapping without Crop Height
6.2. Limitations
7. Conclusions
- (1)
- Crop height can be extracted by subtracting the DEM from the DSM generated by a pix4Dmapper from aerial imagery. The extracted crop height had a very high linear correlation with the field measured crop height, with an R2 value of 0.98.
- (2)
- Crop height information is useful for crop identification. Crops can be identified from the four-band imagery and the crop height can be revealed by an object-based classification method, with an overall accuracy and kappa coefficient of 97.50% and 0.96, respectively. The overall accuracy and kappa coefficient of the crop classification map without crop height were 2.52% and 0.04 lower, respectively. When considering the maximum likelihood, crops could be mapped from the four-band imagery and crop height with an overall accuracy of 78.52% and a kappa coefficient of 0.67, which were 2.63% and 0.04 higher than those without crop height, respectively.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, C.; Westbrook, J.K.; Suh, C.P.-C.; Martin, D.E.; Hoffmann, W.C.; Lan, Y.; Fritz, B.K.; Goolsby, J.A. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing. Remote Sens. 2014, 6, 5257–5278. [Google Scholar] [CrossRef]
- Grenzdörffer, G.; Engel, A.; Teichert, B. The photogrammetric potential of low-cost UAVs in forestry and agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 31, 1207–1214. [Google Scholar]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- George, E.A.; Tiwari, G.; Yadav, R.; Peters, E.; Sadana, S. UAV systems for parameter identification in agriculture. In Proceedings of the IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), Trivandrum, India, 23–24 August 2013; pp. 270–273.
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; De Castro, A.; López-Granados, F. Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 2014, 15, 44–56. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.; De Castro, A.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Hardin, P.; Jackson, M.; Anderson, V.; Johnson, R. Detecting squarrose knapweed (Centaurea virgata Lam. Ssp. Squarrosa Gugl.) using a remotely piloted vehicle: A Utah case study. GISci. Remote Sens. 2007, 44, 203–219. [Google Scholar] [CrossRef]
- Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Swain, K.C.; Thomson, S.J.; Jayasuriya, H.P. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. ASABE 2010, 53, 21–27. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.; McCarty, G.W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Yang, C. A high-resolution airborne four-camera imaging system for agricultural remote sensing. Comput. Electron. Agric. 2012, 88, 13–24. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Davis, M.R.; Mao, C. A CCD camera-based hyperspectral imaging system for stationary and airborne applications. Geocarto Int. 2003, 18, 71–80. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Song, H.; Hoffmann, W.C.; Zhang, D.; Zhang, G. Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification. Remote Sens. 2016, 8, 257. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Brinley Buckley, E.M.; Suyker, A.S.; Awada, T.N. Determining factors that impact the calibration of consumer-grade digital cameras used for vegetation analysis. Int. J. Remote Sens. 2016, 37, 3365–3383. [Google Scholar] [CrossRef]
- Song, H.; Yang, C.; Zhang, J.; Hoffmann, W.C.; He, D.; Thomasson, J.A. Comparison of mosaicking techniques for airborne images from consumer-grade cameras. J. Appl. Remote Sens. 2016, 10, 016030. [Google Scholar] [CrossRef]
- Westbrook, J.K.; Eyster, R.S.; Yang, C.; Suh, C.P.-C. Airborne multispectral identification of individual cotton plants using consumer-grade cameras. Remote Sens. Appl. Soc. Environ. 2016, 4, 37–43. [Google Scholar] [CrossRef]
- Goel, P.; Prasher, S.; Landry, J.A.; Patel, R.; Viau, A.; Miller, J. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans. ASAE 2003, 46, 1235–1464. [Google Scholar]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Song, H.; Yang, C.; Zhang, J.; He, D.; Thomasson, J.A. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot. J. Appl. Remote Sens. 2015, 9, 096013. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Grenzdörffer, G.J. Crop height determination with UAS point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 135. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Papadavid, G.; Hadjimitsis, D.; Toulios, L.; Michaelides, S. Mapping potato crop height and leaf area index through vegetation indices using remote sensing in Cyprus. J. Appl. Remote Sens. 2011, 5, 053526. [Google Scholar] [CrossRef]
- Verhoeven, G.; Vermeulen, F. Engaging with the canopy—Multi-dimensional vegetation mark visualisation using archived aerial images. Remote Sens. 2016, 8, 752. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Franzen, D.W.; Denton, A. Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors. Comput. Electron. Agric. 2016, 124, 254–262. [Google Scholar] [CrossRef]
- Shuai, G.; Zheng, N.; Gang, S.; Dan, Z.; Kun, J.; Yuchu, Q. Height Extraction of Maize Using Airborne Full-waveform LIDAR Data and a Deconvolution Algorithm. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1978–1982. [Google Scholar] [CrossRef]
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [Google Scholar] [CrossRef]
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Conference, Antalya, Turkey, 11–13 November 2013; Volume 1113.
- Zhang, L.; Grift, T.E. A LIDAR-based crop height measurement system for Miscanthus giganteus. Comput. Electron. Agric. 2012, 85, 70–76. [Google Scholar] [CrossRef]
- Yang, C.; Odvody, G.N.; Fernandez, C.J.; Landivar, J.A.; Minzenmayer, R.R.; Nichols, R.L. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot. Precis. Agric. 2015, 16, 201–215. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, X.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring. Remote Sens. 2015, 7, 16293–16314. [Google Scholar] [CrossRef]
- Bareth, G.; Bendig, J.; Tilly, N.; Hoffmeister, D.; Aasen, H.; Bolten, A. A comparison of UVA-and TLS-derived plant height for crop monitoring: Using polygon grids for the analysis of crop surface models (CSMs). Photogramm. Fernerkund. Geoinf. 2016, 2016, 85–94. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D. Characterizing canopy structural complexity for the estimation of maize LAI based on ALS data and UAV stereo images. Int. J. Remote Sens. 2016. [Google Scholar] [CrossRef]
GCP | Error X (m) | Error Y (m) | Error Z (m) | Z-Error after Removal (m) | Independent Sample 1 |
---|---|---|---|---|---|
0 | −0.637 | −0.513 | −0.755 | 0.004 | Yes |
1 | −0.094 | 0.056 | 0.689 | 0.023 | No |
2 | 0.769 | 0.555 | 1.263 | −0.028 | Yes |
3 | 0.173 | 0.435 | 0.533 | 0.005 | No |
4 | 0.103 | 0.434 | 0.170 | 0.009 | Yes |
5 | −0.125 | 0.321 | 0.059 | −0.015 | Yes |
6 | −0.416 | 0.396 | 0.058 | 0.012 | No |
7 | −0.410 | −0.089 | −0.749 | −0.004 | Yes |
8 | 0.284 | −0.065 | 0.921 | −0.050 | No |
9 | −0.432 | −0.014 | 0.214 | 0.017 | Yes |
10 | −0.590 | −0.302 | −0.304 | −0.019 | No |
11 | 0.012 | 0.020 | 0.492 | 0.000 | No |
12 | 0.184 | 0.169 | 0.481 | 0.025 | Yes |
13 | 0.305 | 0.172 | −0.407 | −0.002 | Yes |
14 | 0.148 | −0.171 | −0.145 | −0.003 | Yes |
15 | 0.182 | −0.454 | −0.687 | 0.022 | Yes |
16 | −0.096 | −0.218 | −0.870 | −0.042 | No |
17 | 0.297 | −0.092 | 0.120 | 0.018 | Yes |
18 | −0.023 | −0.316 | −0.090 | 0.048 | Yes |
19 | −0.234 | −0.316 | −0.112 | −0.003 | Yes |
20 | −0.092 | −0.406 | 0.018 | −0.011 | Yes |
21 | 0.437 | 0.250 | 0.971 | −0.001 | Yes |
22 | 0.706 | 0.421 | 0.961 | −0.055 | No |
Mean (m) | 0.019603 | 0.011848 | 0.123106 | 0.000459 | |
Sigma (m) | 0.363778 | 0.313922 | 0.587969 | 0.024957 | |
RMS Error (m) | 0.364306 | 0.314146 | 0.600719 | 0.024839 |
Class | Corn | Cotton | Grass | Sorghum | Bare Soil | Wheat | Road | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|
Corn | 96.79 | 0 | 0 | 0 | 0 | 0 | 0 | 96.79 | 100 |
Cotton | 0.59 | 98.6 | 11.03 | 2.63 | 0.33 | 0 | 18.38 | 98.6 | 98.46 |
Grass | 0 | 0 | 88.97 | 0 | 0 | 0 | 0 | 88.97 | 100 |
Sorghum | 2.63 | 0.17 | 0 | 97.37 | 0.16 | 0 | 0 | 97.37 | 94.2 |
Bare soil | 0 | 0.06 | 0 | 0 | 80 | 0 | 1.18 | 80 | 90.44 |
Wheat | 0 | 0 | 0 | 0 | 0 | 99.87 | 0 | 99.87 | 100 |
Road | 0 | 1.18 | 0 | 0 | 19.51 | 0.13 | 80.44 | 80.44 | 56.92 |
Class | Corn | Cotton | Grass | Sorghum | Bare Soil | Wheat | Road | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|
Corn | 92.07 | 8.31 | 4.79 | 0.59 | 0.14 | 0 | 0 | 92.07 | 74.06 |
Cotton | 1.57 | 71.92 | 0.39 | 9.3 | 26.21 | 1.91 | 0.89 | 71.92 | 97.72 |
Grass | 5.35 | 6.05 | 93.42 | 2.32 | 0 | 0 | 0 | 93.42 | 64.91 |
Sorghum | 0.57 | 6.09 | 1.39 | 86.16 | 0.78 | 0 | 0.73 | 86.16 | 40.41 |
Bare soil | 0.44 | 6.53 | 0 | 1.45 | 40.56 | 0.82 | 12.97 | 40.56 | 11.82 |
Wheat | 0 | 0.5 | 0 | 0 | 9.86 | 97 | 0.41 | 97 | 87.11 |
Road | 0 | 0.6 | 0 | 0.19 | 22.44 | 0.27 | 85.01 | 85.01 | 42.82 |
Class | Corn | Cotton | Grass | Sorghum | Bare Soil | Wheat | Road | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|
Corn | 96.41 | 1.19 | 0 | 1.61 | 0 | 0 | 0 | 96.41 | 94.96 |
Cotton | 1.31 | 94.82 | 11.03 | 1.02 | 0.33 | 0 | 18.38 | 94.82 | 98.44 |
Grass | 0 | 0 | 88.97 | 0 | 0 | 0 | 0 | 88.97 | 100 |
Sorghum | 2.27 | 2.59 | 0 | 97.37 | 0.16 | 0 | 0 | 97.37 | 82.08 |
Bare soil | 0 | 0.06 | 0 | 0 | 77.15 | 0 | 2.8 | 77.15 | 85.88 |
Wheat | 0 | 0 | 0 | 0 | 0 | 99.87 | 0 | 99.87 | 100 |
Road | 0 | 1.34 | 0 | 0 | 22.36 | 0.13 | 78.82 | 78.82 | 53.24 |
Class | Corn | Cotton | Grass | Sorghum | Bare Soil | Wheat | Road | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|
Corn | 87.63 | 9.59 | 4.61 | 1.4 | 0.18 | 0 | 0 | 87.63 | 70.38 |
Cotton | 2.1 | 69.24 | 0.36 | 9.3 | 23.97 | 1.97 | 0.73 | 69.24 | 97.5 |
Grass | 7.02 | 7.46 | 92.1 | 2.75 | 0 | 0 | 0 | 92.1 | 59.36 |
Sorghum | 2.84 | 6.83 | 2.93 | 84.9 | 0.78 | 0 | 0.65 | 84.9 | 34.89 |
Bare soil | 0.4 | 5.83 | 0 | 1.46 | 49.61 | 0.75 | 13.37 | 49.61 | 15.45 |
Wheat | 0 | 0.51 | 0 | 0 | 10.33 | 97.08 | 0.41 | 97.08 | 86.83 |
Road | 0 | 0.54 | 0 | 0.19 | 15.14 | 0.19 | 84.85 | 84.85 | 48.43 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W. Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping. Remote Sens. 2017, 9, 239. https://doi.org/10.3390/rs9030239
Wu M, Yang C, Song X, Hoffmann WC, Huang W, Niu Z, Wang C, Li W. Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping. Remote Sensing. 2017; 9(3):239. https://doi.org/10.3390/rs9030239
Chicago/Turabian StyleWu, Mingquan, Chenghai Yang, Xiaoyu Song, Wesley Clint Hoffmann, Wenjiang Huang, Zheng Niu, Changyao Wang, and Wang Li. 2017. "Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping" Remote Sensing 9, no. 3: 239. https://doi.org/10.3390/rs9030239