Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy
"> Figure 1
<p>The study area of Jamaica Bay, NYC, includes salt marsh islands as labeled on top of the pseudo color display of 2012 Worldview-2 imagery (NIR-1, G, B in RGB). Field photos illustrate: (<b>a</b>) the transition from <span class="html-italic">Phragmites australis</span> to salt marsh; (<b>b</b>) Isolated <span class="html-italic">S. alterniflora</span> patch; and (<b>c</b>) <span class="html-italic">S. alterniflora</span> 50%–100% cover. Salt marshes that have been restored at some point are indicated by a white border.</p> "> Figure 2
<p>Salt marsh change from 2003 to 2013 displayed on a panchromatic 2013 Worldview-2 imagery.</p> "> Figure 3
<p>Salt marsh of Elders Point East and West for 2003, 2008, 2012 and 2013.</p> "> Figure 4
<p>Vegetation change from 2012 to 2013 of the West Pond area.</p> "> Figure 5
<p>The JoCo salt marsh for 2012 and 2013.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Segmentation
2.4. Object Attributes
2.5. Accuracy Assessment
2.6. Statistical Analysis
3. Results
3.1. Wetland Change
3.2. Restored Islands: 2003–2013
3.3. Impact of Hurricane Sandy
3.4. Accuracy Assessment
4. Discussion
4.1. Restoration
4.2. Hurricane Sandy
4.3. Wrack
4.4. Long-Term Monitoring
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Marsh | Year | Mudflat | Sand | S. alterniflora (50% > Vegetation Cover) | Patchy S. alterniflora | High Marsh | Water | Wrack | Upland Vegetation | Phragmites |
---|---|---|---|---|---|---|---|---|---|---|
Pumpkin Patch | 2003 | 0.9 | 0.0 | 1.3 | 1.6 | 0.0 | 30.3 | - | 0.0 | 0.0 |
2008 | 2.1 | 0.0 | 0.8 | 0.7 | 0.1 | 28.9 | 0.1 | 0.0 | 0.0 | |
2012 | 3.3 | 1.4 | 0.2 | 0.3 | 0.0 | 27.4 | 0.1 | 0.0 | 0.0 | |
2013 | 0.7 | 0.1 | 0.2 | 0.2 | 0.0 | 31.4 | 0.0 | 0.0 | 0.0 | |
Canarsie Pol | 2003 | 3.9 | 0.9 | 5.4 | 2.5 | 1.8 | 12.6 | - | 1.2 | 1.7 |
2008 | 3.9 | 0.6 | 5.1 | 1.6 | 2.1 | 12.9 | 0.7 | 0.6 | 2.5 | |
2012 | 9.5 | 1.8 | 4.2 | 3.3 | 0.1 | 6.2 | 0.7 | 0.7 | 3.4 | |
2013 | 7.2 | 1.8 | 5.2 | 1.1 | 0.3 | 9.4 | 0.3 | 0.3 | 4.2 | |
Stony Creek | 2003 | 3.9 | 0.0 | 5.4 | 4.8 | 0.2 | 41.7 | - | 0.0 | 0.0 |
2008 | 4.1 | 0.0 | 6.4 | 2.9 | 1.2 | 21.8 | 0.1 | 0.0 | 0.0 | |
2012 | 5.4 | 0.3 | 6.3 | 2.3 | 0.0 | 22.1 | 0.0 | 0.0 | 0.0 | |
2013 | 3.1 | 0.1 | 7.5 | 1.6 | 0.0 | 24.2 | 0.0 | 0.0 | 0.0 | |
Little Egg | 2003 | 7.7 | 0.7 | 7.1 | 6.1 | 0.8 | 22.6 | - | 0.0 | 1.6 |
2008 | 8.2 | 1.7 | 9.5 | 4.0 | 3.3 | 18.7 | 1.8 | 0.0 | 0.5 | |
2012 | 10.8 | 4.4 | 10.3 | 4.5 | 0.3 | 13.8 | 1.1 | 0.0 | 0.2 | |
2013 | 6.7 | 4.8 | 13.4 | 2.2 | 0.6 | 16.8 | 0.1 | 0.0 | 0.7 | |
Big Egg | 2003 | 8.5 | 0.1 | 7.3 | 5.3 | 1.4 | 15.4 | - | 0.1 | 0.6 |
2008 | 5.8 | 0.1 | 11.9 | 3.6 | 2.5 | 11.7 | 0.3 | 0.1 | 0.6 | |
2012 | 12.0 | 0.3 | 8.5 | 4.8 | 0.2 | 8.6 | 0.5 | 0.0 | 0.4 | |
2013 | 5.9 | 0.2 | 12.6 | 3.2 | 0.3 | 12.3 | 0.1 | 0.0 | 0.8 | |
Black Wall + Rulers Bar | 2003 | 2.9 | 0.0 | 1.5 | 2.6 | 0.0 | 47.4 | - | 0.0 | 0.0 |
2008 | 5.1 | 0.0 | 2.1 | 2.3 | 1.0 | 43.9 | 0.0 | 0.0 | 0.0 | |
2012 | 8.3 | 2.9 | 1.2 | 1.5 | 0.0 | 40.4 | 0.0 | 0.0 | 0.0 | |
2013 | 17.1 | 1.1 | 0.9 | 0.3 | 0.0 | 34.9 | 0.0 | 0.0 | 0.0 | |
Black Bank | 2003 | 9.5 | 1.1 | 27.4 | 11.5 | 5.4 | 27.2 | - | 19.6 | 4.8 |
2008 | 8.9 | 1.7 | 27.0 | 6.7 | 5.0 | 20.3 | 3.2 | 19.7 | 7.7 | |
2012 | 19.3 | 2.7 | 25.7 | 6.8 | 2.4 | 15.5 | 3.0 | 19.2 | 5.6 | |
2013 | 8.6 | 2.3 | 29.4 | 3.5 | 3.5 | 24.7 | 1. | 18.8 | 8.4 | |
Duck Point | 2003 | 4.6 | 0.1 | 3.9 | 2.6 | 0.6 | 40.2 | - | 0.0 | 0.0 |
2008 | 2.6 | 0.1 | 4.1 | 4.3 | 0.1 | 49.7 | 0.0 | 0.0 | 0.0 | |
2012 | 10.4 | 1.0 | 3.2 | 2.1 | 0.0 | 35.3 | 0.2 | 0.0 | 0.0 | |
2013 | 4.3 | 0.2 | 3.8 | 1.3 | 0.0 | 42.6 | 0.0 | 0.0 | 0.0 | |
Broad Creek | 2003 | 1.3 | 0.0 | 1.4 | 0.7 | 0.6 | 33.9 | - | 0.0 | 0.1 |
2008 | 1.8 | 0.2 | 0.8 | 0.2 | 0.4 | 27.4 | 0.2 | 0.0 | 0.0 | |
2012 | 2.7 | 0.4 | 0.6 | 0.2 | 0.1 | 26.9 | 0.1 | 0.0 | 0.0 | |
2013 | 1.3 | 0.2 | 0.8 | 0.2 | 0.1 | 28.4 | 0.0 | 0.0 | 0.1 | |
East High | 2003 | 10.5 | 0.1 | 14.3 | 5.8 | 3.0 | 49.6 | - | 0.0 | 0.0 |
2008 | 15.1 | 0.1 | 12.5 | 3.1 | 4.0 | 48.2 | 0.3 | 0.0 | 0.0 | |
2012 | 18.7 | 0.7 | 11.8 | 1.6 | 2.6 | 47.7 | 0.2 | 0.0 | 0.0 | |
2013 | 5.1 | 0.3 | 12.7 | 1.7 | 2.8 | 60.6 | 0.0 | 0.0 | 0.0 | |
JoCo | 2003 | 11.1 | 0.1 | 72.4 | 20.1 | 37.5 | 83.6 | - | 0.1 | 1.3 |
2008 | 11.9 | 0.1 | 74.5 | 11.8 | 44.6 | 79.6 | 3.1 | 0.0 | 0.4 | |
2012 | 18.5 | 0.3 | 82.0 | 6.5 | 35.5 | 80.9 | 2.2 | 0.0 | 0.1 | |
2013 | 12.6 | 0.1 | 90.7 | 7.1 | 29.8 | 85.1 | 0.5 | 0.0 | 0.0 | |
Elders Point West | 2003 | 2.8 | 0.2 | 1.2 | 0.7 | 0.2 | 40.1 | - | 0.1 | |
2008 | 3.9 | 0.4 | 1.0 | 0.5 | 0.5 | 38.4 | 0.1 | 0.0 | 0.1 | |
2012 | 15.5 | 0.7 | 0.5 | 2.8 | 0.0 | 25.3 | 0.1 | 0.0 | 0.1 | |
2013 | 14.0 | 0.3 | 2.2 | 2.4 | 0.2 | 25.5 | 0.3 | 0.0 | 0.3 | |
Yellow Bar | 2003 | 18.2 | 0.0 | 12.9 | 12.6 | 0.8 | 67.9 | - | 0.0 | 0.0 |
2008 | 23.1 | 0.0 | 17.5 | 9.0 | 1.8 | 56.4 | 0.1 | 0.0 | 0.0 | |
2012 | 43.0 | 0.7 | 12.5 | 5.6 | 0.1 | 46.0 | 0.1 | 0.0 | 0.0 | |
2013 | 33.7 | 0.1 | 18.7 | 7.5 | 0.1 | 48.0 | 0.0 | 0.0 | 0.0 | |
Silverhole | 2003 | 11.1 | 0.0 | 11.8 | 8.0 | 0.9 | 40.7 | - | 0.0 | 0.0 |
2008 | 12.6 | 0.0 | 15.2 | 3.3 | 1.1 | 25.5 | 0.2 | 0.0 | 0.1 | |
2012 | 16.6 | 0.4 | 12.9 | 3.0 | 0.2 | 24.5 | 0.3 | 0.0 | 0.0 | |
2013 | 13.3 | 0.2 | 14.5 | 3.4 | 0.3 | 26.1 | 0.0 | 0.0 | 0.0 | |
Ruffle Bar | 2003 | 4.1 | 1.9 | 7.7 | 1.8 | 6.4 | 12.0 | - | 0.1 | 3.0 |
2008 | 3.7 | 2.5 | 6.3 | 0.8 | 7.7 | 11.3 | 2.1 | 0.0 | 0.5 | |
2012 | 7.7 | 3.4 | 6.5 | 1.5 | 5.2 | 7.4 | 1.0 | 2.2 | 0.0 | |
2013 | 44.6 | 3.3 | 6.1 | 0.7 | 5.1 | 11.1 | 0.2 | 3.9 | 0.0 | |
Elders Point East | 2003 | 2.3 | 0.2 | 2.0 | 1.5 | 0.2 | 68.0 | 0.0 | 0.1 | 0.2 |
2008 | 5.4 | 0.3 | 11.0 | 1.0 | 0.7 | 54.4 | 0.7 | 0.2 | 0.6 | |
2012 | 11.4 | 1.2 | 7.5 | 1.1 | 0.5 | 51.1 | 1.0 | 0.3 | 0.1 | |
2013 | 9.6 | 1.0 | 8.2 | 0.7 | 0.9 | 53.1 | 0.2 | 0.1 | 0.6 |
Marsh | 2003–2008 | 2008–2012 | 2012–2013 |
---|---|---|---|
Pumpkin Patch | −0.3 | −0.3 | −0.1 |
Canarsie Pol | −0.01 | −0.1 | −0.2 |
Stony Creek | 0.03 | −0.5 | 0.5 |
Little Egg | 0.3 | −0.5 | 1.5 |
Big Egg | 0.8 | −1.2 | 2.9 |
Black wall + Rulers Bar | 0.2 | −0.7 | −1.5 |
Black Bank | −0.5 | −1.5 | 4.3 |
Duck Point | 0.3 | −0.8 | −0.1 |
Broad Creek | −0.3 | −0.1 | 0.2 |
East High | −0.7 | −0.9 | 1.3 |
JoCo | 0.0 | −1.7 | 3.5 |
Elders Point West | −0.02 | 0.3 | 1.6 |
Elders Point East | 1.9 | −1.0 | 1.1 |
Yellow Bar | 0.4 | −2.5 | 8.0 |
Silverhole | −0.2 | −0.9 | 2.2 |
Ruffle Bar | −0.7 | −0.5 | −1.4 |
Variable Type | Variable Name | Variable Importance |
---|---|---|
Elevation | DEM mean | 47 |
Elevation | DEM Standard Deviation (SD) | 4 |
Elevation | DEM min | 4 |
Elevation | DEM max | 57 |
Elevation | DEM range | 3 |
Elevation | DEM sum | 17 |
Geospatial | Node points | 0 |
Geospatial | Perimeter | 1 |
Geospatial | Area | 1 |
Ancillary | Upland binary layer | 36 |
Spectral | Coastal blue mean | 24 |
Spectral | Coastal blue SD | 2 |
Spectral | Blue mean | 31 |
Spectral | Blue SD | 1 |
Spectral | Green mean | 28 |
Spectral | Green SD | 0 |
Spectral | Yellow Mean | 26 |
Spectral | Yellow SD | 1 |
Spectral | Red mean | 29 |
Spectral | Red SD | 1 |
Spectral | Red edge mean | 46 |
Spectral | Red Edge SD | 3 |
Spectral | NIR1 mean | 58 |
Spectral | NIR2 Mean | 67 |
Spectral | Coastal blue mean neighborhood difference | 0 |
Spectral | Blue mean neighborhood difference | 0 |
Spectral | Green mean neighborhood difference | 1 |
Spectral | Yellow mean neighborhood difference | 1 |
Spectral | Red mean neighborhood difference | 1 |
Spectral | Red edge mean neighborhood difference | 0 |
Spectral | NIR1 mean neighborhood difference | 0 |
Spectral | NIR2 mean neighborhood difference | 0 |
Spectral | Coastal blue mean neighborhood difference | 16 |
Spectral | Blue mean scene difference | 20 |
Spectral | Green mean scene difference | 30 |
Spectral | Yellow mean scene difference | 25 |
Spectral | Red mean scene difference | 33 |
Spectral | Red edge mean scene difference | 54 |
Spectral | NIR1 mean scene difference | 51 |
Spectral | NIR2 mean scene difference | 73 |
Spectral | NIR1 SD | 4 |
Spectral | NIR2 SD | 1 |
Texture | Correlation mean | 0 |
Texture | Entropy mean | 0 |
Texture | Inverse Difference Moment(IDM) mean | 0 |
Texture | Uniformity mean | 0 |
Texture | Contrast mean | 0 |
Texture | Correlation mean neighborhood difference | 0 |
Texture | Entropy mean neighborhood difference | 0 |
Texture | IDM mean neighborhood difference | 0 |
Texture | Uniformity mean neighborhood difference | 0 |
Texture | Contrast mean scene difference | 0 |
Texture | Correlation mean scene difference | 0 |
Texture | Entropy mean scene difference | 0 |
Texture | IDM mean scene difference | 0 |
Texture | Uniformity mean scene difference | 0 |
Texture | Contrast SD | 0 |
Texture | Entropy SD | 0 |
Texture | IDM SD | 0 |
Texture | Uniformity SD | 0 |
Vegetation Index | REVI mean | 26 |
Vegetation Index | WVVI mean | 74 |
Vegetation Index | WVWI mean | 93 |
Vegetation Index | REVI mean neighborhood difference | 0.9 |
Vegetation Index | WVVI mean neighborhood difference | 1 |
Vegetation Index | WVWI mean neighborhood difference | 1 |
Vegetation Index | REVI mean scene difference | 12 |
Vegetation Index | WVVI mean scene difference | 66 |
Vegetation Index | WVWI mean scene difference | 100 |
Vegetation Index | REVI SD | 0 |
Vegetation Index | WVVI SD | 0 |
Vegetation Index | WVWI SD | 0 |
Vegetation Index | SAVI range | 0 |
Vegetation Index | SAVI mean | 39 |
Vegetation Index | SAVI SD | 0 |
Vegetation Index | NDVI range | 0 |
Vegetation Index | NDVI mean | 50 |
Vegetation Index | NDVI SD | 0 |
References
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Dahl, T.E. Wetlands Losses in the United States, 1780’s to 1980’s; Report to the Congress; U.S. Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1990.
- Dahl, T.E.; Stedman, S. Status and Trends of Wetlands in the Conterminous United States 2004 to 2009; U.S. Department of the Interior, U.S. Fish and Wildlife Service, Fisheries and Habitat Conservation: Washington, DC, USA, 2011.
- Rafferty, P.; Castagna, J.; Adamo, D. Building Partnerships to Restore an Urban Marsh Ecosystem at Gateway National Recreation Area; PAGES: Integrating Reseearch and Resource Management in the National Parks; National Park Service: Washington, DC, USA, 2010.
- National Park Service. An Update on the Disappearing Salt Marshes of Jamaica Bay, New York; Prepared by Gateway National Recreation Area; National Park Service: Washington, DC, USA, 2007.
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagherazzi, S.; Wollheim, W.M. Coastal Eutrophication as a Driver of Salt Marsh Loss. Nature 2012, 490, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tobey, J.; Bonynge, G.; Nugranad, J.; Makota, V.; Ngusaru, A.; Traber, M. Involving Geospatial Information in the Analysis of Land-Cover Change along the Tanzania Coast. Coast. Manag. 2005, 33, 87–99. [Google Scholar] [CrossRef]
- Wang, Y.; Christiano, M.; Traber, M.; Wang, J. Mapping salt marshes in Jamaica Bay and terrestrial vegetation in Fire Island National seashore using QuickBird satellite data. In Remote Sensing of Coastal Environments; CRC Press: Boca Raton, FL, USA, 2010; pp. 191–208. [Google Scholar]
- Wang, Y.; Traber, M.; Milstead, B.; Stevens, S. Terrestrial and Submerged Aquatic Vegetation Mapping in Fire Island National Seashore using High Spatial Resolution Remote Sensing Data. Mar. Geod. 2007, 30, 77–95. [Google Scholar] [CrossRef]
- Aerts, J.C.; Lin, N.; Botzen, W.; Emanuel, K.; de Moel, H. Low-Probability Flood Risk Modeling for New York City. Risk Anal. 2013, 33, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Solecki, W. Hurricane Sandy and Adaptation Pathways in New York: Lessons from a First-Responder City. Glob. Environ. Chang. 2014, 28, 395–408. [Google Scholar] [CrossRef]
- Michener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate Change, Hurricanes and Tropical Storms, and Rising Sea Level in Coastal Wetlands. Ecol. Appl. 1997, 7, 770–801. [Google Scholar] [CrossRef]
- United States Census Bureau—American FactFinder. DP02: Selected Social Characteristics in the United States. American Community Survey 2014. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_S0101&prodType=table (accessed on 30 October 2016).
- New York City Department of Environmental Protection. Jamaica Bay Watershed Protection Plan. In Planning for Jamaica Bay’s Future: Final Recommendations on the Jamaica Bay Watershed Protection; Jamiaca Bay Watershed Protection Plan Advisory Committee: New York, NY, USA, 2007; pp. 1–75. [Google Scholar]
- Benotti, M.J.; Abbene, M.; Terracciano, S.A. Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005; U.S. Geological Survey Scientific Investigations Report 2007-5051; U.S. Geological Survey, New York Water Science Center: Troy, NY, USA, 2007; pp. 1–17.
- Frame, G.W.; Mellander, K.M.; Adamo, D.A. Big egg marsh experimental restoration in Jamaica Bay, New York. In People, Places, and Parks: Proceedings of the 2005 George Wright Society Conference on Parks, Protected Areas, and Cultural Sites; Harmon, D., Ed.; The George Wright Society: Hancock, MI, USA, 2006; pp. 2–9. [Google Scholar]
- Lane, C.R.; Liu, H.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Wu, Q. Improved Wetland Classification using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach. Remote Sens. 2014, 6, 12187–12216. [Google Scholar] [CrossRef]
- Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 75–89. [Google Scholar]
- Chen, G.; Hay, G.J.; Carvalho, L.M.; Wulder, M.A. Object-Based Change Detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Powers, R.P.; Hay, G.J.; Chen, G. How Wetland Type and Area Differ through Scale: A GEOBIA Case Study in Alberta’s Boreal Plains. Remote Sens. Environ. 2012, 117, 135–145. [Google Scholar] [CrossRef]
- Espindola, G.; Câmara, G.; Reis, I.; Bins, L.; Monteiro, A. Parameter Selection for region-growing Image Segmentation Algorithms using Spatial Autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar] [CrossRef]
- Johnson, B.; Xie, Z. Unsupervised Image Segmentation Evaluation and Refinement using a Multi-Scale Approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 473–483. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing Object-Based Classification: Advantages and Limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Bo, S.; Ding, L.; Li, H.; Di, F.; Zhu, C. Mean shift-based Clustering Analysis of Multispectral Remote Sensing Imagery. Int. J. Remote Sens. 2009, 30, 817–827. [Google Scholar] [CrossRef]
- Yang, G.; Pu, R.; Zhang, J.; Zhao, C.; Feng, H.; Wang, J. Remote Sensing of Seasonal Variability of Fractional Vegetation Cover and Its Object-Based Spatial Pattern Analysis Over Mountain Areas. ISPRS J. Photogramm. Remote Sens. 2013, 77, 79–93. [Google Scholar] [CrossRef]
- Ming, D.; Li, J.; Wang, J.; Zhang, M. Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example. ISPRS J. Photogramm. Remote Sens. 2015, 106, 28–41. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Corcoran, J.M.; Knight, J.F.; Gallant, A.L. Influence of Multi-Source and Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random Forest Classification of Salt Marsh Vegetation Habitats using Quad-Polarimetric Airborne SAR, Elevation and Optical RS Data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Hartig, E.K.; Kolker, A.; Gornitz, V. Investigations into recent salt marsh losses in Jamaica Bay, New York. In Integrated Reconnaissance of the Physical and Biogeochemical Characteristics of Jamaica Bay: Initial Activity Phase; Gateway National Recreation Area and the Columbia Earth Institute: New York, NY, USA, 2002; pp. 21–40. [Google Scholar]
- Akar, Ö.; Güngör, O. Integrating Multiple Texture Methods and NDVI to the Random Forest Classification Algorithm to Detect Tea and Hazelnut Plantation Areas in Northeast Turkey. Int. J. Remote Sens. 2015, 36, 442–464. [Google Scholar] [CrossRef]
- Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-Scale GEOBIA with very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High Density Biomass Estimation for Wetland Vegetation using WorldView-2 Imagery and Random Forest Regression Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Johnson, B. Effects of Pansharpening on Vegetation Indices. ISPRS Int. J. Geo-Inf. 2014, 3, 507–522. [Google Scholar] [CrossRef]
- Psuty, N.; McLoughlin, S.; Schmelz, W.; Spahn, A. Unpublished Digital Geomorphological-GIS Map of the Jamaica Bay Unit, Gateway National Recreation Area. IRMA 2014. Available online: https://irma.nps.gov/DataStore/Reference/Profile/2233887 (accessed on 30 October 2016).
- National Oceanic and Atmospheric Administration. NOAA Post Hurricane Sandy Topobathymetric LiDAR Mapping for Shoreline Mapping. 2014. Available online: https://data.noaa.gov/dataset/2014-noaa-post-hurricane-sandy-topobathymetric-lidar-mapping-for-shoreline-mapping (accessed on 30 October 2016). [Google Scholar]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Lantz, N.J.; Wang, J. Object-Based Classification of Worldview-2 Imagery for Mapping Invasive Common Reed, Phragmites Australis. Can. J. Remote Sens. 2013, 39, 328–340. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Center for Operational Oceanographic Products and Services (CO-OPS). Sandy Hook Tidal Station. 2015. Available online: https://tidesandcurrents.noaa.gov/waterlevels.html?id=8531680 (accessed on 30 October 2016). [Google Scholar]
- Brand, C.J.; Windingstad, R.M.; Siegfried, L.M.; Duncan, R.M.; Cook, R.M. Avian Morbidity and Mortality from Botulism, Aspergillosis, and Salmonellosis at Jamaica Bay Wildlife Refuge, New York, USA. Colonial Waterbirds 1988, 11, 284–292. [Google Scholar] [CrossRef]
- National Park Service. Jamaica Bay Wildlife Refuge West Pond Trail Breach Repair Environmental Assessment; National Park Service: Washington, DC, USA, 2015; Volume 1, pp. 1–304.
- New York City Department of Environmental Protection. Jamaica Bay Watershed Protection Plan 2014 Update; New York City Department of Environmental Protection: New York, NY, USA, 2014; pp. 1–57.
- Wigand, C.; Roman, C.T.; Davey, E.; Stolt, M.; Johnson, R.; Hanson, A.; Watson, E.B.; Moran, S.B.; Cahoon, D.R.; Lynch, J.C. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure. Ecol. Appl. 2014, 24, 633–649. [Google Scholar] [CrossRef] [PubMed]
- U.S. Army Corps of Engineers New York District. Vision of a World Class Harbor Estuary; Harbor Inspection: Huntington, NY, USA, 2015; pp. 1–70.
- Zedler, J.B.; Callaway, J.C. Tracking Wetland Restoration: Do Mitigation Sites Follow Desired Trajectories? Restor. Ecol. 1999, 7, 69–73. [Google Scholar] [CrossRef]
- McKee, K.L.; Cherry, J.A. Hurricane Katrina Sediment Slowed Elevation Loss in Subsiding Brackish Marshes of the Mississippi River Delta. Wetlands 2009, 29, 2–15. [Google Scholar] [CrossRef]
- Roman, C.T.; Peck, J.A.; Allen, J.; King, J.W.; Appleby, P.G. Accretion of a New England (USA) Salt Marsh in Response to Inlet Migration, Storms, and Sea-Level Rise. Estuar. Coast. Shelf Sci. 1997, 45, 717–727. [Google Scholar] [CrossRef]
- Guntenspergen, G.R.; Cahoon, D.R.; Grace, J.; Steyer, G.D.; Fournet, S.; Townson, M.A.; Foote, A.L. Disturbance and Recovery of the Louisiana Coastal Marsh Landscape from the Impacts of Hurricane Andrew. J. Coast. Res. 1995, 21, 324–339. [Google Scholar]
- Day, J.W.; Britsch, L.D.; Hawes, S.R.; Shaffer, G.; Reed, D.J.; Cahoon, D. Pattern and Process of Land Loss in the Mississippi Delta: A Spatial and Temporal Analysis of Wetland Habitat Change. Estuaries 2000, 23, 425–438. [Google Scholar] [CrossRef]
- Hook, D.D.; Buford, M.A.; Williams, T.M. Impact of Hurricane Hugo on the South Carolina Coastal Plain Forest. J. Coast. Res. 1991, 291–300. [Google Scholar]
- Flynn, K.; McKee, K.; Mendelssohn, I. Recovery of Freshwater Marsh Vegetation after a Saltwater Intrusion Event. Oecologia 1995, 103, 63–72. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Goodrick, S.L.; Outcalt, K.W. Disturbance and Coastal Forests: A Strategic Approach to Forest Management in Hurricane Impact Zones. For. Ecol. Manag. 2007, 250, 119–135. [Google Scholar] [CrossRef]
- National Park Service. Finding of No Significant Impact Jamaica Bay Wildlife Refuge West Pond Trail Breach Repair; National Park Service: Washington, DC, USA, 2016; pp. 1–56.
- Byer, M.; Frame, G.; Panagakos, W.; Waaijer, M.; Aranbayev, Z.; Michaels, Y.; Stalter, R.; Schreibman, M. Effects of Wrack Accumulation on Spartina Alterniflora, Jamaica Bay Wildlife Refuge, New York City. WIT Trans. Ecol. Environ. 2004, 68, 1–8. [Google Scholar]
- Stedman, S.; Dahl, T.E. Status and Trends of Wetlands in the Coastal Watersheds of the Eastern United States 1998 to 2004; United States Fish and Wildlife Service: Washington, DC, USA, 2008; pp. 1–32.
- National Oceanic and Atmosphere Administration. Northeast 2010 Coastal Change Analysis Program Accuracy Assessment; National Oceanic and Atmosphere Administration: Silver Spring, MD, USA, 2014; pp. 1–11.
- Shuman, C.S.; Ambrose, R.F. A Comparison of Remote Sensing and Ground-Based Methods for Monitoring Wetland Restoration Success. Restor. Ecol. 2003, 11, 325–333. [Google Scholar] [CrossRef]
- Raposa, K.B.; Weber, R.L.; Ekberg, M.C.; Ferguson, W. Vegetation Dynamics in Rhode Island Salt Marshes during a Period of Accelerating Sea Level Rise and Extreme Sea Level Events. Estuar. Coasts 2016, 1–11. [Google Scholar] [CrossRef]
- Costanza, R.; Perez-Maqueo, O.; Martinez, M.; Sutton, P.; Anderson, S.J.; Mulder, K. The Value of Coastal Wetlands for Hurricane Protection. Ambio 2008, 37, 241–248. [Google Scholar] [CrossRef]
WVVI | WVWI | NDVI | Red Edge Vegetation Index | SAVI |
---|---|---|---|---|
Year | Mudflat | Sand | S. alterniflora (>50% Vegetation Cover) | Patchy S. alterniflora | High Marsh | Water | Wrack | Upland Vegetation | Phragmites | Overall Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Producer’s Accuracy (%) | 2003 | 90.12 | 98.70 | 70.73 | 71.43 | 82.93 | 97.50 | - | 92.68 | 81.01 | 85.63 |
2008 | 89.53 | 83.16 | 76.84 | 80.23 | 85.54 | 96.59 | 77.46 | 91.86 | 85.33 | 85.23 | |
2012 | 89.53 | 90.70 | 95.06 | 88.37 | 98.77 | 98.84 | 80.43 | 91.46 | 82.35 | 90.46 | |
2013 | 92.31 | 92.77 | 92.05 | 98.75 | 91.86 | 100.0 | 89.41 | 94.05 | 82.35 | 92.55 | |
User’s Accuracy (%) | 2003 | 91.25 | 95.00 | 72.50 | 68.75 | 85.00 | 97.50 | - | 95.00 | 80.00 | 85.63 |
2008 | 90.59 | 92.94 | 85.88 | 81.18 | 83.53 | 100.0 | 64.71 | 92.94 | 75.29 | 85.23 | |
2012 | 90.59 | 91.76 | 90.59 | 89.41 | 91.12 | 100.0 | 87.06 | 88.24 | 82.35 | 90.46 | |
2013 | 98.82 | 90.59 | 95.29 | 92.94 | 92.94 | 97.65 | 89.41 | 92.94 | 82.35 | 92.55 |
2013 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | Water | Mudflat | Sand | S. alterniflora (50% > Vegetation Cover) | Patchy S. alterniflora | Phragmites | High Marsh | Upland | Total 2003 Area (ha) | |
2003 | Water | 485.5 | 66.3 | 3.8 | 12.6 | 6.7 | 0.1 | 0.8 | 0.0 | 651.4 |
Mudflat | 19.4 | 43.3 | 3.5 | 22.4 | 11.1 | 0.3 | 0.7 | 0.0 | 102.2 | |
Sand | 0.4 | 1.0 | 2.7 | 0.5 | 0.2 | 0.2 | 0.1 | 0.1 | 5.7 | |
S. alterniflora (50% > vegetation cover) | 13.4 | 16.5 | 2.5 | 115.6 | 10.1 | 6.1 | 16.4 | 1.0 | 183.4 | |
Patchy S. alterniflora | 11.2 | 19.3 | 0.8 | 46.4 | 8.9 | 0.4 | 2.3 | 0.1 | 89.9 | |
Phragmites | 0.1 | 0.2 | 1.5 | 2.6 | 0.8 | 5.5 | 1.0 | 1.1 | 14.0 | |
High Marsh | 2.3 | 1.4 | 0.8 | 26.6 | 1.3 | 3.0 | 22.8 | 0.5 | 59.2 | |
Upland | 0.00 | 0.2 | 0.3 | 0.2 | 0.2 | 3.2 | 0.1 | 16.5 | 21.3 | |
Total 2013 Area (ha) | 535.7 | 148.0 | 16.1 | 226.7 | 36.8 | 19.0 | 44.0 | 19.3 |
2012 | |||||||
---|---|---|---|---|---|---|---|
Change or No Change Areas (ha) | Mudflat | Sand | Wetland | Water | Upland Veg. | Post-Storm Total | |
2013 | Mudflat | 0.3 | 0.0 | 4.4 | 1.0 | 2.5 | 8.3 |
Sand | 0.0 | 0.4 | 0.9 | 0.0 | 0.4 | 1.7 | |
Wetland | 0.0 | 0.0 | 7.4 | 0.0 | 2.8 | 10.2 | |
Water | 0.1 | 0.0 | 0.4 | 16.9 | 0.1 | 17.5 | |
Upland Veg. | 0.0 | 0.0 | 0.2 | 0.0 | 5.8 | 6.0 | |
Pre-storm Total | 0.4 | 0.5 | 13.3 | 17.9 | 11.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, A.; Wang, Y.; Christiano, M.; Stevens, S. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy. Remote Sens. 2017, 9, 131. https://doi.org/10.3390/rs9020131
Campbell A, Wang Y, Christiano M, Stevens S. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy. Remote Sensing. 2017; 9(2):131. https://doi.org/10.3390/rs9020131
Chicago/Turabian StyleCampbell, Anthony, Yeqiao Wang, Mark Christiano, and Sara Stevens. 2017. "Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy" Remote Sensing 9, no. 2: 131. https://doi.org/10.3390/rs9020131
APA StyleCampbell, A., Wang, Y., Christiano, M., & Stevens, S. (2017). Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy. Remote Sensing, 9(2), 131. https://doi.org/10.3390/rs9020131