A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery
"> Figure 1
<p>Sentinel-2A image tile VNK from 23 August 2016 at 10:30 a.m. UTC showing Skagen—the northernmost tip of Denmark. The image is RGB contrast-enhanced. A number of container and tanker ships (see <a href="#remotesensing-08-01033-t001" class="html-table">Table 1</a>) are moored just east of Skagen in the tranquil sea of Kattegat, a number of which are waiting for bulk fuel. Close to the coast a few clouds can be seen, with their shadows being cast northward.</p> "> Figure 2
<p>The RGB ship image box of NS Burgas (see <a href="#remotesensing-08-01033-t001" class="html-table">Table 1</a>, also present in <a href="#remotesensing-08-01033-f001" class="html-fig">Figure 1</a>). Multiplying the pixels (i,j) by l = 10 m gives the ship coordinates (x,y). The axes show the ship axis coordinate system (x’,y’). Insert shows a horizontal visual image of the ship (with a substantially higher pixel resolution).</p> "> Figure 3
<p>Sketch of Kelvin waves and turbulent wake from a sailing ship.</p> "> Figure 4
<p>(<b>a</b>) Ship lengths and (<b>b</b>) breadths. The ground truth lengths and breadths are from AIS ship records. The satellite lengths and breadths are the calculated values as used in the model given in <a href="#remotesensing-08-01033-t001" class="html-table">Table 1</a>. Blue lines indicate agreement whereas dashed line includes bow corrections as described in text.</p> "> Figure 5
<p>(<b>a</b>) Ship with Kelvin waves and turbulent wake; (<b>b</b>) Corresponding ship breadth B(x’) along ship axis x’ including wake oscillations.</p> ">
Abstract
:1. Introduction
2. Satellite Data and Ship Modeling
2.1. Sentinel-2 Data and Analysis
2.2. Ship Model and Parameters
2.3. Turbulent Wakes and Kelvin Waves
3. Results
3.1. Multispectral Signatures
3.2. Ship’s Total Reflectance, Position, Heading, Length, and Breadth
3.3. Wake Removal and Ship Speed
4. Discussion
5. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
Appendix A. Determination of Ship Parameters
References
- ESA Sentinel-2 Delivers First Images. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Sentinel-2_delivers_first_images (accessed on 7 January 2016).
- Krogager, E.; Heiselberg, H.; Møller, J.G.; von Platen, S. Fusion of SAR and EO imagery for Arctic surveillance. In Proceedings of the NATO IST-SET-128 Specialist Meeting, Norfolk, VA, USA, 4–5 May 2015.
- Brekke, C.; Weydahl, D.J.; Helleren, Ø.; Olsen, R. Ship traffic monitoring using multipolarisation satellite SAR images combined with AIS reports. In Proceedings of the 7th European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany, 2–5 June 2008.
- Daniel, B.; Schaum, A.; Allman, E.; Leathers, R.; Downes, T. Automatic ship detection from commercial multispectral satellite imagery. Proc. SPIE 8743 2013. [Google Scholar] [CrossRef]
- Burgess, D.W. Automatic ship detection in satellite multispectral imagery. Photogramm. Eng. Remote Sens. 1993, 59, 229–237. [Google Scholar]
- Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446–3456. [Google Scholar] [CrossRef]
- Corbane, C.; Marre, F.; Petit, M. Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area. Sensors 2008, 8, 2959–2973. [Google Scholar] [CrossRef] [PubMed]
- Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A complete processing chain for ship detection using optical satellite imagery. Int. J. Remote Sens. 2010, 31, 5837–5854. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.-B.; Zhao, B. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174–1185. [Google Scholar] [CrossRef]
- Gade, M.; Hühnerfuss, H.; Korenowski, G. Marine Surface Films; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifcations in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Eismann, M.T. Hyperspectral Remote Sensing. SPIE 2012, PM210, 748. [Google Scholar]
- Lapierre, F.D.; Borghgraef, A.; Vandewal, M. Statistical real-time model for performance prediction of ship detection from microsatellite electro-optical imagers. EURASIP J. Adv. Signal Process. 2009, 2010, 1–15. [Google Scholar] [CrossRef]
- Golbraikh, E.; Eidelman, A.; Soloviev, A. On the helical behavior of turbulence in the ship wake. J. Hydrodyn. Ser. B 2013, 25, 83–90. [Google Scholar] [CrossRef]
- Bouma, H.; Dekker, R.J.; Schoemaker, R.M.; Mohamoud, A.A. Segmentation and Wake Removal of Seafaring Vessels in Optical Satellite Images. Proc. SPIE 2013, 8897. [Google Scholar] [CrossRef]
- Thomson, W. On ship waves. Proc. Inst. Mech. Eng. 1887, 38, 409–434. [Google Scholar] [CrossRef]
- Selva, M.; Aiazzi, B.; Butera, F.; Chiarantini, L.; Baronti, S. Hyper-sharpening: A first approach on SIM-GA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3008–3024. [Google Scholar] [CrossRef]
Ship | I2+3+4 | θ | ε | L (m) | B (m) |
---|---|---|---|---|---|
NS Burgas | 26,370 | 33° | 0.913 | 240 (275) | 51 (48) |
Eagle Barents | 32,976 | 21° | 0.912 | 252 (276) | 55 (46) |
GijonKnutsen | 9939 | 17° | 0.950 | 187 (183) | 30 (27) |
MarmaraMariner | 2827 | 4° | 0.968 | 130 (129) | 17 (17) |
Trade Navigator | 2738 | 11° | 0.963 | 125 (118) | 17 (16) |
Afines Sky | 8013 | 19° | 0.949 | 152 (162) | 24 (23) |
Skaw Provider | 818 | 28° | 0.966 | 110 (95) | 15 (15) |
Loireborg | 2997 | 33° | 0.955 | 113 (122) | 17 (14) |
Solstraum | 2880 | 23° | 0.899 | 89 (94) | 21 (18) |
Fjellstraum | 2134 | 1° | 0.950 | 94 (100) | 15 (16) |
BW Yangtze | 14,530 | 33° | 0.951 | 204 (229) | 32 (32) |
StenFjell | 4343 | −84° | 0.921 | 131 (149) | 27 (24) |
SCL Basilia | 4130 | −97° | 0.947 | 127 (140) | 21 (22) |
Karen Knutsen | 20,809 | −91° | 0.914 | 256 (274) | 54 (50) |
Edith Kirk | 6208 | −100° | 0.939 | 171 (183) | 30 (27) |
Grumant | 5256 | −104° | 0.966 | 147 (181) | 19 (23) |
ChampionTrader | 4223 | −85° | 0.975 | 185 (189) | 21 (30) |
Wilson Mersin | 1412 | −74° | 0.942 | 84 (107) | 15 (15) |
Voorneborg | 4590 | −69° | 0.944 | 116 (132) | 20 (16) |
Coral Monactis | 1765 | −69° | 0.885 | 74 (95) | 18 (15) |
AtlanticaHav | 358 | −50° | 0.845 | 53 (82) | 15 (11) |
Coral Obelia | 741 | −49° | 0.930 | 83 (93) | 16 (15) |
Coral Pearl | 3201 | −60° | 0.934 | 105 (115) | 19 (19) |
HHL Amur | 8078 | 25° | 0.920 | 128 (138) | 26 (21) |
HDW Herkules | 1615 | −88° | 0.819 | 53 (54) | 17 (10) |
Elly Kynde | 165 | 0° | 1 | 17 (19) | ≈5 (5) |
Gottskar | 434 | 0° | 1 | 17 (21) | ≈5 (6) |
Frank Maiken | 1081 | 18° | 0.485 | 26 (18) | 16 (6) |
Haukur 1 | 5366 | −7° | 0.878 | 95 (75) | 24 (13) |
Ritz Dueodde 1 | 525 | 28° | 0.904 | 32 (15) | 7 (5) |
Torland 1 | 14,076 | −1° | 0.930 | 183 (140) | 35 (22) |
Sea Endurance 2 | 4350 | 11° | 0.731 | 90 (110) | 35 (18) |
Bow Triumph 2 | 11,227 | 2° | 0.852 | 162 (183) | 46 (32) |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiselberg, H. A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery. Remote Sens. 2016, 8, 1033. https://doi.org/10.3390/rs8121033
Heiselberg H. A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery. Remote Sensing. 2016; 8(12):1033. https://doi.org/10.3390/rs8121033
Chicago/Turabian StyleHeiselberg, Henning. 2016. "A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery" Remote Sensing 8, no. 12: 1033. https://doi.org/10.3390/rs8121033