Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data
<p>HJ-1A charge-coupled device (CCD) false-color composite image of the study area of Deqing County, Zhejiang Province, East China.</p> "> Figure 2
<p>The single-cropped rice calendar in Deqing County, Zhejiang Province, China: (<b>a</b>) machinery transplants rice seedlings, 21 June 2012; (<b>b</b>) tillering period, about two weeks after transplanting; (<b>c</b>) the tillering period reached the maximum tiller number on 30 July 2012; (<b>d</b>) ear differentiation period, 15 August 2012; (<b>e</b>) heading period, flowering, 31 August 2012; (<b>f</b>) ripening stage, ready to be harvested, 18 November 2012. Photos (<b>a</b>–<b>f</b>) were taken at the same rice sample plot, as there were several rice varieties planted, but the start date of each period is different.</p> "> Figure 3
<p>Location of sample quadrats in a sample plot.</p> "> Figure 4
<p>Relationships between measured rice leaf area index (m<sup>2</sup>/m<sup>2</sup>) and dry aboveground biomass (g/m<sup>2</sup>) at different rice growth stages with VIs. (<b>a</b>) Before heading LAI estimation using EVI2-BPNN regression; (<b>b</b>) after heading LAI estimation using NDVI-SVM regression; (<b>c</b>) all-growth stage AGB estimation using daily cumulative NDVI and based on the quadratic polynomial fit function; (<b>d</b>) all-growth stage AGB estimation using 10-day composite data and based on the cumulative NDVI quadratic polynomial fit function. The black dash lines are the 45° lines, and the red solid lines are the linear regression trend lines.</p> "> Figure 5
<p>Dynamic curves of rice dry aboveground biomass (g/m<sup>2</sup>) based on logarithmic equations: (<b>a</b>) logarithmic curve of one sample plot in 2013; (<b>b</b>) comparison of measured aboveground biomass with estimated values of all the sample plots during 2012–2013 (<span class="html-italic">n</span> = 194). The black curve is the best-fit function for in situ AGB estimation, the black dashed line is the 45° line, and the red solid line is the linear regression trend line.</p> "> Figure 6
<p>Regression analysis of HJ-1 CCD cumulative VIs versus dry aboveground biomass (g/m<sup>2</sup>) using a quadratic polynomial fit function: (<b>a</b>) daily cumulative NDVI function and (<b>b</b>) 10-day composite data based on cumulative NDVI function. The blue solid lines are the regression trend lines.</p> "> Figure 7
<p>Results of dynamic mapping of LAI for single-cropped rice in Deqing County in 2012.</p> "> Figure 8
<p>Results of dynamic mapping of LAI for single-cropped rice in Deqing County in 2013.</p> "> Figure 9
<p>Dry aboveground biomass dynamic mapping of single-cropped rice in Deqing County in 2012.</p> "> Figure 9 Cont.
<p>Dry aboveground biomass dynamic mapping of single-cropped rice in Deqing County in 2012.</p> "> Figure 10
<p>Dry aboveground biomass dynamic mapping of single-cropped rice in Deqing County in 2013.</p> "> Figure 11
<p>Flow chart of rice growth dynamic mapping.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurement of Crop Parameters
2.3. Remote Sensing Data and Vegetation Indices (VIs)
2.4. Deriving LAI and AGB via VIs
2.5. Dynamic Mapping
3. Results
3.1. Relationships between VIs and Rice Growth Parameters
3.2. LAI and AGB Regression Model Analysis
3.3. Dynamic Mapping Method of Rice Growth Monitoring
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Jiang, B.; Li, X.J. Real-time retrieval of Leaf Area Index from MODIS time series data. Remote Sens. Environ. 2011, 115, 97–106. [Google Scholar] [CrossRef]
- Koppe, W.; Li, F.; Gnyp, M.L.; Miao, Y.X.; Jia, L.L.; Chen, X.P.; Zhang, F.S.; Bareth, G. Evaluating multispectral and hyperspectral satellite remote sensing data for estimating winter wheat growth parameters at regional scale in the North China plain. Photogramm. Fernerkund. 2010, 167–178. [Google Scholar] [CrossRef]
- Liu, J.G.; Pattey, E.; Jego, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Lu, D.S. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop. Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192, 140–148. [Google Scholar] [CrossRef]
- Chaurasia, S.; Nigam, R.; Bhattacharya, B.K.; Sridhar, V.N.; Mallick, K.; Vyas, S.P.; Patel, N.K.; Mukherjee, J.; Shekhar, C.; Kumar, D.; et al. Development of regional wheat VI-LAI models using Resourcesat-1 AWiFS data. J. Earth Syst. Sci. 2011, 120, 1113–1125. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.P.; Zhang, L.P.; Deng, M.X.; Qin, Z.H.; Zhao, S.H.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Fang, H.L.; Liang, S.L. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2052–2062. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Song, J.L.; Wu, X.Y. A Temporally integrated inversion method for estimating leaf area index from MODIS data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2536–2545. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. For. Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- Yin, H.; Udelhoven, T.; Fensholt, R.; Pflugmacher, D.; Hostert, P. How normalized difference vegetation index (NDVI) trends from advanced very high resolution radiometer (AVHRR) and systeme probatoire d’observation de la terre VEGETATION (SPOT VGT) time series differ in agricultural areas: An inner mongolian case study. Remote Sens. 2012, 4, 3364–3389. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Wardlow, B.D.; Keydan, G.P.; Leavitt, B. An evaluation of MODIS 250-m data for green LAI estimation in crops. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Huang, J.F.; Wang, X.Z.; Li, X.X.; Tian, H.Q.; Pan, Z.K. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLos ONE 2013, 8, e70816. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, V.K.; Jain, S.; Aggarwal, P.K.; Jha, S. Deriving Crop Phenology metrics and their trends using times series NOAA-AVHRR NDVI data. J. Indian Soc. Remote Sens. 2011, 39, 373–381. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhang, K.; Li, X.; She, B.; Wei, C.; Gao, J.; Song, X. Rice fields mapping in fragmented area using multi-temporal HJ-1A/B CCD images. Remote Sens. 2015, 7, 3467–3488. [Google Scholar] [CrossRef]
- Fang, H.L.; Wei, S.S.; Liang, S.L. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Yang, P.; Shibasaki, R.; Wu, W.B.; Zhou, Q.B.; Chen, Z.X.; Zha, Y.; Shi, Y.; Tang, H.J. Evaluation of MODIS land cover and LAI products in cropland of North China plain using in situ measurements and landsat TM images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3087–3097. [Google Scholar] [CrossRef]
- Wu, B.F.; Li, Q.Z. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. Int. J. Appl. Earth Obs. 2012, 16, 101–112. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.F.; Wang, X.Z.; Jin, M.T.; Zhou, Z.; Guo, Q.Y.; Zhao, Z.W.; Huang, W.J.; Zhang, Y.; Song, X.D. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images. J. Zhejiang Univ. Sci. B 2015, 16, 832–844. [Google Scholar] [PubMed]
- Li, X.C.; Zhang, Y.J.; Luo, J.H.; Jin, X.L.; Xu, Y.; Yang, W.Z. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons. Int. J. Appl. Earth Obs. 2016, 44, 104–112. [Google Scholar] [CrossRef]
- Gao, S.; Niu, Z.; Huang, N.; Hou, X.H. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. Appl. Earth Obs. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Shi, J.J.; Huang, J.F.; Zhang, F. Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. J. Zhejiang Univ. Sci. B 2013, 14, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; Texas AM University: College Station, TX, USA, 1974; p. 371. [Google Scholar]
- Gu, Y.X.; Wylie, B.K.; Howard, D.M.; Phuyal, K.P.; Ji, L. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Kim, Y.; Huete, A.R.; Miura, T.; Jiang, Z.Y. Spectral compatibility of vegetation indices across sensors: Band decomposition analysis with Hyperion data. J. Appl. Remote Sens. 2010, 4. [Google Scholar] [CrossRef]
- Liu, J.G.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B.X. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Xiao, X.; He, L.; Salas, W.; Li, C.; Moore, B.; Zhao, R.; Frolking, S.; Boles, S. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields. Int. J. Remote Sens. 2002, 23, 3595–3604. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Mitchell, P.L.; Ferrer, A.B. Bi-phasic growth patterns in rice. Ann. Bot. 2004, 94, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.K.; Huang, J.F.; Zhou, Q.B.; Wang, L.M.; Cheng, Y.X.; Zhang, H.K.; Blackburn, G.A.; Yan, J.; Liu, J.H. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Chen, P.Y.; Srinivasan, R.; Fedosejevs, G.; Narasimhan, B. An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. Int. J. Remote Sens. 2002, 23, 2939–2950. [Google Scholar] [CrossRef]
- van Leeuwen, W.J.D.; Huete, A.R.; Laing, T.W. MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar] [CrossRef]
- Luck, W.; van Niekerk, A. Evaluation of a rule-based compositing technique for Landsat-5 TM and Landsat-7 ETM+ images. Int. J. Appl. Earth Obs. 2016, 47, 1–14. [Google Scholar] [CrossRef]
- Song, X.N.; Liu, Z.H.; Zhao, Y.S. Cloud detection and analysis of MODIS image. In Proceedings of the IGARSS 2004: IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volumes 1–7, pp. 2764–2767.
- Yang, X.H.; Huang, J.F.; Wu, Y.P.; Wang, J.W.; Wang, P.; Wang, X.M.; Huete, A.R. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci. China Life Sci. 2011, 54, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.J.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Li, L.Y.; Chen, Y.; Xu, T.B.; Liu, R.; Shi, K.F.; Huang, C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ. 2015, 164, 142–154. [Google Scholar] [CrossRef]
- Modaresi, F.; Araghinejad, S. A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water Resour. Manag. 2014, 28, 4095–4111. [Google Scholar] [CrossRef]
- Saponaro, G.; Kolmonen, P.; Karhunen, J.; Tamminen, J.; de Leeuw, G. A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements. Atmos. Meas. Tech. 2013, 6, 2301–2309. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. Acm Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Cheng, Q. Validation and correction of MOD15-LAI using in situ rice LAI in southern China. Commun. Soil Sci. Plant Anal. 2008, 39, 1658–1669. [Google Scholar] [CrossRef]
- Chen, J.S.; Huang, J.X.; Hu, J.X. Mapping rice planting areas in southern China using the China Environment Satellite data. Math. Comput. Model. 2011, 54, 1037–1043. [Google Scholar] [CrossRef]
- Huang, S.Y.; Miao, Y.X.; Zhao, G.M.; Yuan, F.; Ma, X.B.; Tan, C.X.; Yu, W.F.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Shang, J.L.; Liu, J.G.; Huffman, T.; Qian, B.D.; Pattey, E.; Wang, J.F.; Zhao, T.; Geng, X.Y.; Kroetsch, D.; Dong, T.F.; et al. Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Li, X.C.; Zhang, Y.J.; Bao, Y.S.; Luo, J.H.; Jin, X.L.; Xu, X.G.; Song, X.Y.; Yang, G.J. Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression. Remote Sens. 2014, 6, 6221–6241. [Google Scholar] [CrossRef]
- Pan, J.J.; Yang, H.; He, W.; Xu, P.P. Retrieve leaf area index from HJ-CCD image based on support vector regression and physical model. Proc. SPIE 2013, 8887. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hutt, C.; Yao, Y.K.; Miao, Y.X.; Chen, X.P.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. 2013, 21, 568–576. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J. Arid Environ. 2000, 45, 43–59. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Jin, X.L.; Yang, G.J.; Xu, X.G.; Yang, H.; Feng, H.K.; Li, Z.H.; Shen, J.X.; Zhao, C.J.; Lan, Y.B. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 Data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
No. | Satellite | Date | Field Campaign Date | Samples | ||
---|---|---|---|---|---|---|
LAI | AGB | Plant Density | ||||
1 | HJ-1A | 29 June 2012 | 29 June 2012 | 9 | 9 | 9 |
2 | HJ-1B | 19 July 2012 | 20 July 2012 | 11 | 11 | 11 |
3 | HJ-1A | 29 July 2012 | 30 July 2012 | 11 | 11 | 11 |
4 | HJ-1A | 17 August 2012 | 15 August 2012 | 11 | 11 | 11 |
5 | HJ-1B | 2 September 2012 | 31 August 2012 * | 11 | 11 | 11 |
6 | HJ-1B | 18 September 2012 | 16 September 2012 | 11 | 11 | 11 |
7 | HJ-1B | 29 September 2012 | 26 September 2012 | 11 | 11 | 11 |
8 | HJ-1B | 10 October 2012 | 13 October 2012 | 11 | 11 | 11 |
9 | HJ-1A | 23 October 2012 | 26 October 2012 | 11 | 11 | 11 |
10 | HJ-1A | 19 November 2012 | 18 November 2012 | 5 | 8 | 8 |
11 | HJ-1A | 1 July 2013 | 3 July 2013 | 10 | 10 | 10 |
12 | HJ-1B | 18 July 2013 | 17 July 2013 | 10 | 10 | 10 |
13 | HJ-1B | 6 August 2013 | 6 August 2013 | 10 | 10 | 10 |
14 | HJ-1A | 24 August 2013 | 24 August 2013 | 10 | 10 | 10 |
15 | HJ-1B | 10 September 2013 | 9 September 2013 * | 10 | 10 | 10 |
16 | HJ-1B | 26 September 2013 | 26 September 2013 | 10 | 10 | 10 |
17 | HJ-1B | 11 October 2013 | 12 October 2013 | 10 | 10 | 10 |
18 | HJ-1B | 26 October 2013 | 27 October 2013 | 10 | 10 | 10 |
19 | HJ-1A | 16 November 2013 | 15 November 2013 | 9 | 9 | 9 |
Satellite | Payload | Band No. | Spectral Range (µm) | Nadir Spatial Resolution (m) | Swath Width (km) | Repetition Cycle (Day) |
---|---|---|---|---|---|---|
HJ-1A/B | Multispectral CCD camera (CCD1 & CCD2) | 1-Blue | 0.43–0.52 | 30 | 360 (700 for two) | 4 |
2-Green | 0.52–0.60 | 30 | ||||
3-Red | 0.63–0.69 | 30 | ||||
4-NIR | 0.76–0.90 | 30 |
Image Features | LAI | AGB | ||||
---|---|---|---|---|---|---|
All Stages | Before Heading | After Heading | All Stages | Before Heading | After Heading | |
n = 191 | n = 93 | n = 98 | n = 194 | n = 93 | n = 101 | |
NDVI | 0.588 ** | 0.811 ** | 0.665 ** | −0.040 | 0.786 ** | −0.684 ** |
EVI2 | 0.622 ** | 0.856 ** | 0.652 ** | −0.089 | 0.834 ** | −0.644 ** |
cu NDVI | - | - | - | 0.963 ** | 0.959 ** | 0.722 ** |
cu EVI2 | - | - | - | 0.959 ** | 0.950 ** | 0.705 ** |
Growth Stages | LAI | AGB | ||||||
---|---|---|---|---|---|---|---|---|
VI | Model | RRMSECV | VI | Model | RRMSECV | |||
All stages | EVI2 | E | 0.358 | 10.210 | cu EVI2 | Q | 0.923 | 18.247 |
B | 0.362 | 10.193 | B | 0.918 | 18.452 | |||
S | 0.444 | 9.968 | S | 0.921 | 32.613 | |||
NDVI | E | 0.275 | 10.798 | cu NDVI | Q | 0.929 | 17.621 | |
B | 0.334 | 10.460 | B | 0.922 | 17.964 | |||
S | 0.467 | 10.185 | S | 0.927 | 32.092 | |||
Before heading | EVI2 | E | 0.831 | 6.074 | cu EVI2 | Q | 0.909 | 25.317 |
B | 0.926 | 6.152 | B | 0.901 | 26.932 | |||
S | 0.900 | 6.776 | S | 0.884 | 45.126 | |||
NDVI | P | 0.644 | 8.960 | cu NDVI | Q | 0.922 | 23.496 | |
B | 0.615 | 9.023 | B | 0.902 | 25.187 | |||
S | 0.629 | 10.363 | S | 0.920 | 40.714 | |||
After heading | EVI2 | E | 0.421 | 8.036 | cu EVI2 | Q | 0.481 | 15.067 |
B | 0.474 | 8.019 | B | 0.474 | 15.998 | |||
S | 0.416 | 8.205 | S | 0.571 | 14.862 | |||
NDVI | E | 0.496 | 7.607 | cu NDVI | Q | 0.516 | 14.632 | |
B | 0.610 | 8.630 | B | 0.426 | 13.207 | |||
S | 0.657 | 7.076 | S | 0.573 | 14.587 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, J.; Gao, P.; Wei, C.; Mansaray, L.R. Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data. Remote Sens. 2016, 8, 931. https://doi.org/10.3390/rs8110931
Wang J, Huang J, Gao P, Wei C, Mansaray LR. Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data. Remote Sensing. 2016; 8(11):931. https://doi.org/10.3390/rs8110931
Chicago/Turabian StyleWang, Jing, Jingfeng Huang, Ping Gao, Chuanwen Wei, and Lamin R. Mansaray. 2016. "Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data" Remote Sensing 8, no. 11: 931. https://doi.org/10.3390/rs8110931