A Cost-Constrained Sampling Strategy in Support of LAI Product Validation in Mountainous Areas
"> Figure 1
<p>The composite image of Landsat 8 OLI’s 5, 4, and 3 bands (corresponding to R, G, and B color space) (<b>a</b>); land cover map (<b>b</b>); elevation map (<b>c</b>); and cost map (<b>d</b>) in the study area. The bold line in (<b>d</b>) indicates the roads digitized from Google Earth.</p> "> Figure 2
<p>Changes in RMSEs of NDVI (<b>a</b>) and slope (<b>b</b>) from vegetation type-based (VTB), cost-constrained (CSS) and conditioned Latin hypercube without cost constraints (CLH) sampling strategies, respectively.</p> "> Figure 3
<p>RMSEs of NDVI and slope (<b>a</b>) and mean cost-distance (<b>b</b>) as a function of the cost-distance threshold with the sample number equal to 30. The dashed lines in (<b>a</b>) represent the RMSEs of NDVI and slope from conditioned Latin hypercube sampling without cost constraints (CLH), and the dashed line in (<b>b</b>) represents mean cost-distance to reach the sampling points from CLH.</p> "> Figure 4
<p>NDVI (<b>a</b>) and slope (<b>b</b>) frequency distribution histograms of 30 selected sampling plots given by VTB, CLH and CSS sampling strategies and of the entire study area. VTB, CLH, and CSS refer to vegetation type-based, traditional conditioned Latin hypercube, and cost-constrained sampling strategies, respectively.</p> "> Figure 5
<p>Sampling plots allocation through VTB (<b>a</b>), CLH (<b>b</b>), and CSS (<b>c</b>) sampling strategies over the entire study area. VTB, CLH, and CSS refer to vegetation type-based, traditional conditioned Latin hypercube and cost-constrained sampling strategies, respectively. The background image is cost map used in the optimization procedure of CSS. The circle labeled by A in (<b>a</b>) indicates the region where two plots nearly overlapped together.</p> "> Figure 6
<p>Box plots of the averages of NDVI (<b>a</b>) and slope (<b>b</b>) calculated from 1000 samples generated using vegetation type-based (VTB), cost-constrained (CSS), and conditioned Latin hypercube without cost constraints (CLH) sampling strategies, respectively. The box stretches from the average + SD to average − SD. The median is shown as a horizontal line in each box. The bars correspond to the 5th percentile and 95th percentile, respectively. The green solid line represents the average calculated from the entire study area.</p> "> Figure 7
<p>Evolution of the overall objective function (Equation (7)) with number of iterations. The dashed line indicates the threshold (5.5) used to stop the iteration.</p> "> Figure 8
<p>Density scatterplot between slope and NDVI in our study area. NDVI shows near-independence with slope with a Pearson correlation coefficient equal to 0.14.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. The Cost-Constrained Sampling Strategy (CSS)
2.3. Implementation of the Algorithm
- (1)
- Select the auxiliary variables.One of the most important considerations to select a proper auxiliary variable is that the variable should be highly correlated with the LAI variability.
- (2)
- Determine the sample number n and the cost-distance threshold thD.
- (3)
- Separate the distribution of the population into n strata, and calculate the quantile for each auxiliary variable.
- (4)
- Randomly pick one plot from each stratum.
- (5)
- Calculate the overall objective function (Equation (7)).
- (6)
- Perform a simulated annealing schedule to update the sample of the previous iteration.The simulated annealing schedule accepts some of the changes that worsen the overall objective function (Equation (7)) to avoid being trapped in a local optimum. The probability of accepting a worse sample is given by P = exp(−ΔC/T), where ΔC is the change in overall objective function between two iterations, and T is a cooling temperature which starts at 1 and is decreased by a factor of 0.95 at each iteration. At each iteration, a random number R is generated between 0 and 1. If R < P, the new sample is accepted, otherwise the change is discarded.
- (7)
- Perform the changes of a plot in the selected sample.Generate another random number R, if R < p, pick a plot randomly from currently generated sample and swap it with a random plot outside the current sample. Otherwise, remove the plot from current sample which has the largest overall objective function value, and replace it with a random plot outside the current sample. The value of p is between 0 and 1 showing the probability of the search being a random search or systematically replacing the plots that worst fit the strata. the value of p was empirically specified as 0.5 by a trial-and-error approach.
- (8)
- Repeat steps (5)–(7) until the overall objective function is reduced to less than a specified threshold (5.5, in this study), or the interaction number is larger than a specified number (5000, in this study). The specified threshold of 5.5 was determined according to visual assessment. After thousands of tests, we found that when it reaches this value the overall objective function nearly converges. The determination of the specified threshold will be described in detail in Section 4.6.
2.4. Assessment
2.4.1. Assessing Representativeness and Cost of the Sampling Strategy
2.4.2. Assessing Accuracy and Uncertainty of the Sampling Strategy
3. Study Site and Data
4. Results
4.1. Sensitivity to Sample Number
4.2. Sensitivity to the Cost-Distance Threshold
4.3. Representativeness of the Sample
4.4. Implementation Cost of the Sample
4.5. Uncertainties of the Sampling Strategies
4.6. Convergence of the Proposed Sampling Strategy
5. Discussion
5.1. Compromise between Representativeness and Implementation Cost
5.2. Selection of Auxiliary Variables
5.3. Sampling Design at the Plot Scale
5.4. Practicability of the Proposed Sampling Strategy
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Defining leaf-area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. BAM Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Nino, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION—Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Beal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Hu, J.N.; Tan, B.; Shabanov, N.; Crean, K.A.; Martonchik, J.V.; Diner, D.J.; Knyazikhin, Y.; Myneni, R.B. Performance of the MISR LAI and FPAR algorithm: A case study in Africa. Remote Sens. Environ. 2003, 88, 324–340. [Google Scholar] [CrossRef]
- Fang, H.L.; Wei, S.S.; Liang, S.L. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global leaf area index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113, 20. [Google Scholar] [CrossRef]
- Martinez, B.; Garcia-Haro, F.J.; Camacho-de Coca, F. Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site. Agric. For. Meteorol. 2009, 149, 130–145. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G.; et al. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Yin, G.F.; Li, J.; Liu, Q.H.; Li, L.H.; Zeng, Y.L.; Xu, B.D.; Yang, L.; Zhao, J. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the Heihe River Basin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 359–363. [Google Scholar]
- Mu, X.; Hu, M.; Song, W.; Ruan, G.; Ge, Y.; Wang, J.; Huang, S.; Yan, G. Evaluation of sampling methods for validation of remotely sensed fractional vegetation cover. Remote Sens. 2015, 7, 16164–16182. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E. Representing major soil variability at regional scale by constrained Latin hypercube sampling of remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 301–310. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Li, J.; Liu, Q.H.; Li, L.H.; Xu, B.D.; Yin, G.F.; Peng, J.J. A sampling strategy for remotely sensed LAI product validation over heterogeneous land surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3128–3142. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Li, J.; Liu, Q.H.; Qu, Y.H.; Huete, A.R.; Xu, B.D.; Yin, G.F.; Zhao, J. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sens. 2015, 7, 1300–1319. [Google Scholar] [CrossRef]
- Grafstrom, A. Spatially correlated poisson sampling. J. Stat. Plan. Inference 2012, 142, 139–147. [Google Scholar] [CrossRef]
- Chen, D.M.; Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 2009, 64, 140–150. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Allard, D.; Garrigue, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Morisette, J.; et al. VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens. Environ. 2005, 76, 36–39. [Google Scholar]
- Reese, H.; Olsson, H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter. Remote Sens. Environ. 2011, 115, 1387–1400. [Google Scholar] [CrossRef]
- Tian, Y.H.; Woodcock, C.E.; Wang, Y.J.; Privette, J.L.; Shabanova, N.V.; Zhou, L.M.; Zhang, Y.; Buermann, W.; Dong, J.R.; Veikkanen, B.; et al. Multiscale analysis and validation of the MODIS LAI product—II. Sampling strategy. Remote Sens. Environ. 2002, 83, 431–441. [Google Scholar] [CrossRef]
- Grafstrom, A.; Schelin, L. How to select representative samples. Scand. J. Stat. 2014, 41, 277–290. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, L.; Li, M.C.; Liu, Y.X.; Ma, X.X. Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Wang, J.F.; Christakos, G.; Hu, M.G. Modeling spatial means of surfaces with stratified nonhomogeneity. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4167–4174. [Google Scholar] [CrossRef]
- Silva, S.H.G.; Owens, P.R.; Silva, B.M.; de Oliveira, G.C.; de Menezes, M.D.; Pinto, L.C.; Curi, N. Evaluation of conditioned Latin hypercube sampling as a support for soil mapping and spatial variability of soil properties. Soil Sci. Soc. Am. J. 2015, 79, 603–611. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Chu, H.-J.; Wang, C.-L.; Yu, H.-H.; Wang, Y.-C. Remote sensing data with the conditional Latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances. Sensors 2009, 9, 148–174. [Google Scholar] [CrossRef] [PubMed]
- Camacho, F.; Cemicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Gret-Regamey, A.; Brunner, S.H.; Kienast, F. Mountain ecosystem services: Who cares? Mount. Res. Dev. 2012, 32, S23–S34. [Google Scholar] [CrossRef]
- Chen, W.; Cao, C.X. Topographic correction-based retrieval of leaf area index in mountain areas. J. Mount. Sci. 2012, 9, 166–174. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M. Improved LAI algorithm implementation to MODIS data by incorporating background, topography, and foliage clumping information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1076–1088. [Google Scholar] [CrossRef]
- Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of leaf area index in mountain grasslands in the Alps from MODIS satellite imagery. Remote Sens. Environ. 2015, 165, 159–174. [Google Scholar] [CrossRef]
- Brown, T.B.; Hultine, K.R.; Steltzer, H.; Denny, E.G.; Denslow, M.W.; Granados, J.; Henderson, S.; Moore, D.; Nagai, S.; SanClements, M.; et al. Using phenocams to monitor our changing Earth: Toward a global phenocam network. Front. Ecol. Environ. 2016, 14, 84–93. [Google Scholar] [CrossRef]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination—Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Wang, Y.J.; Woodcock, C.E.; Buermann, W.; Stenberg, P.; Voipio, P.; Smolander, H.; Hame, T.; Tian, Y.H.; Hu, J.N.; Knyazikhin, Y.; et al. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sens. Environ. 2004, 91, 114–127. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Yang, Z.Q.; Gower, S.T.; Turner, D.P.; Ritts, W.D.; Berterretche, M.; Running, S.W. Comparisons of land cover and LAI estimates derived from ETM plus and MODIS for four sites in North America: A quality assessment of 2000/2001 provisional MODIS products. Remote Sens. Environ. 2003, 88, 233–255. [Google Scholar] [CrossRef]
- Yin, G.F.; Li, J.; Liu, Q.H.; Fan, W.L.; Xu, B.D.; Zeng, Y.L.; Zhao, J. Regional leaf area index retrieval based on remote sensing: The role of radiative transfer model selection. Remote Sens. 2015, 7, 4604–4625. [Google Scholar] [CrossRef]
- Luisa, E.M.; Frederic, B.; Marie, W. Slope correction for LAI estimation from gap fraction measurements. Agric. For. Meteorol. 2008, 148, 1553–1562. [Google Scholar] [CrossRef]
- Berterretche, M.; Hudak, A.T.; Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Dungan, J. Comparison of regression and geostatistical methods for mapping leaf area index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sens. Environ. 2005, 96, 49–61. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Grafstrom, A.; Lundstrom, N.L.P.; Schelin, L. Spatially balanced sampling through the pivotal method. Biometrics 2012, 68, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, Y.; Ju, W.; Chen, J. Evaluation of topographic effects on four commonly used vegetation indices. J. Remote Sens. 2013, 17, 210–234. [Google Scholar]
- USGS. Provisional Landsat 8 Surface Reflectance Product Guide; USGS: Washington, DC, USA, 2015.
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proceedings of the 2011 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), New York, NY, USA, 24–29 July 2011; pp. 3657–3660.
- Deng, Y.X.; Chen, X.F.; Chuvieco, E.; Warner, T.; Wilson, J.P. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens. Environ. 2007, 111, 122–134. [Google Scholar] [CrossRef]
- Nackaerts, K.; Coppin, P.; Muys, B.; Hermy, M. Sampling methodology for LAI measurements with LAI-2000 in small forest stands. Agric. For. Meteorol. 2000, 101, 247–250. [Google Scholar] [CrossRef]
- Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorporating operational constraints. In Digital Soil Assessments and Beyond; CRC Press: Sydney, NSW, Australia, 2012; pp. 227–231. [Google Scholar]
- Ryu, Y.; Lee, G.; Jeon, S.; Song, Y.; Kimm, H. Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. Remote Sens. Environ. 2014, 149, 227–238. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F. Modeling temporal changes in surface spatial heterogeneity over an agricultural site. Remote Sens. Environ. 2008, 112, 588–602. [Google Scholar] [CrossRef]
Ranges of Cost-Distance | 0–1000 | 1000–2000 | 2000–3000 | 3000–4000 | 4000–5000 | Mean Cost-Distance |
---|---|---|---|---|---|---|
VTB | 12 | 8 | 7 | 2 | 1 | 1458.1 |
CLH | 17 | 8 | 3 | 2 | 0 | 1035.8 |
CSS | 25 | 5 | 0 | 0 | 0 | 459.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, G.; Li, A.; Zeng, Y.; Xu, B.; Zhao, W.; Nan, X.; Jin, H.; Bian, J. A Cost-Constrained Sampling Strategy in Support of LAI Product Validation in Mountainous Areas. Remote Sens. 2016, 8, 704. https://doi.org/10.3390/rs8090704
Yin G, Li A, Zeng Y, Xu B, Zhao W, Nan X, Jin H, Bian J. A Cost-Constrained Sampling Strategy in Support of LAI Product Validation in Mountainous Areas. Remote Sensing. 2016; 8(9):704. https://doi.org/10.3390/rs8090704
Chicago/Turabian StyleYin, Gaofei, Ainong Li, Yelu Zeng, Baodong Xu, Wei Zhao, Xi Nan, Huaan Jin, and Jinhu Bian. 2016. "A Cost-Constrained Sampling Strategy in Support of LAI Product Validation in Mountainous Areas" Remote Sensing 8, no. 9: 704. https://doi.org/10.3390/rs8090704