Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss
"> Figure 1
<p>Comparison of the GB-SAR observed with the model predicted backscattering on 17 January 2007 (<b>a</b>) at X band and (<b>b</b>) at Ku band; and 5 February 2007 (<b>c</b>) at X band and (<b>d</b>) at Ku band.</p> "> Figure 2
<p>Total backscattering coefficient from dry snow at X (<b>left</b>) and Ku (<b>right</b>) bands with VV polarization and incidence angle of 40° against increase in snow depth. The values of 0.1 mm, 0.3 mm, 0.4 mm and 0.6 mm were applied for the optical grain size <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> </semantics> </math>. The <span class="html-italic">b</span> parameter was 1.2.</p> "> Figure 3
<p>The attenuation factor for different snow densities for X (<b>left</b>) and Ku (<b>right</b>) bands.</p> "> Figure 4
<p>Comparing the simulated snow volume backscattering of X at VV (<b>a</b>) and VH (<b>b</b>) polarizations; and that of Ku at VV (<b>c</b>) and VH (<b>d</b>) polarizations with the ones calculated by Equations (7)–(10), respectively.</p> "> Figure 5
<p>The relationship between single scattering albedo at X band and that at Ku band (<b>left</b>) and the relationship between the snow optical thickness at X bands and at Ku band (<b>right</b>).</p> "> Figure 6
<p>The contours of cost function with constraints (<b>a</b>) and without constraints (<b>b</b>), using a simulated test case.</p> "> Figure 7
<p>Comparison between the empirically estimated absorption coefficient through Equation (16) and the one simulated by the bi-continuous-VRT model.</p> "> Figure 8
<p>The relationship between temperature and SWE at X band under the fixed absorption part of optical thickness 0.0057 at X band.</p> "> Figure 9
<p>The time series of observed SWE (<b>black</b>) and estimated SWE (<b>red</b>) during: 27 December 2009–19 March 2010 (<b>a</b>); and 29 October 2010–4 April 2011 (<b>b</b>).</p> "> Figure 10
<p>Retrieval using six different settings for the albedo reference values and variance values. Retrieved SWE (<b>red</b> dots) in comparison to measured SWE (<b>yellow</b> dots) with ±30 mm standard error (<b>black</b>) during: 27 December 2009–19 March 2010 (<b>a</b>); and 29 October 2010–4 April 2011 (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Snowpack Backscattering Simulation
2.1. The Theoretical Forward Model for Backscattering from Snowpack
2.2. Model Validation with SARALPS-2007 Data
2.3. Impacts of Grain Size on the Simulated Snowpack Backscattering
3. Retrieval Method
3.1. Snow Volume Scattering Model Simplification
3.2. Relationships of Albedo and Optical Thickness at X and Ku Bands
3.3. Cost Function
3.4. Estimation of SWE
4. NoSREx Experimental Dataset
5. Results and Analysis
5.1. A Comparison of Estimated and Measured SWE
5.2. Impact of Reference Value on SWE Estimation
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Laghari, A.; Vanham, D.; Rauch, W. To what extent does climate change result in a shift in alpine hydrology? A case study in the Austrian Alps. Hydrol. Sci. J. 2012, 57, 103–117. [Google Scholar] [CrossRef]
- Reinhardt, S.; Odland, A.; Pedersen, A. Calciphile alpine vegetation in Southern Norway: Importance of snow and possible effects of climate change. Phytocoenologia 2013, 43, 207–223. [Google Scholar] [CrossRef]
- Berghuijs, W.; Woods, R.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Simonovic, S. System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrol. Process. 2002, 16, 2645–2666. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Yang, P.; Xie, Y.; Miller, W. Snow optical properties for different particle shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica. Remote Sens. Environ. 2008, 112, 3563–3581. [Google Scholar] [CrossRef]
- Vander Jagt, B.J.; Durand, M.T.; Margulis, S.A.; Kim, E.J.; Molotch, N.P. The effect of spatial variability on the sensitivity of passive microwave measurements to snow water equivalent. Remote Sens. Environ. 2013, 136, 163–179. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Stiles, W.H. The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow. J. Geophys. Res. Oceans (1978–2012) 1980, 85, 1045–1049. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2475–2488. [Google Scholar]
- Ulaby, F.T.; Stiles, W.H.; Abdelrazik, M. Snowcover influence on backscattering from terrain. IEEE Trans. Geosci. Remote Sens. 1984, 126–133. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2465–2474. [Google Scholar]
- Yueh, S.H.; Dinardo, S.J.; Akgiray, A.; West, R.; Cline, D.W.; Elder, K. Airborne Ku-band polarimetric radar remote sensing of terrestrial snow cover. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3347–3364. [Google Scholar] [CrossRef]
- Brogioni, M.; Macelloni, G.; Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E.; X’iong, C.; Crepaz, A. In Sensitivity analysis of microwave backscattering and emission to snow water equivalent: Synergy of dual sensor observations. In Proceedings of the XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–3.
- Nghiem, S.V.; Tsai, W.-Y. Global snow cover monitoring with spaceborne Ku-band scatterometer. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2118–2134. [Google Scholar] [CrossRef]
- Shi, J.; Yueh, S.; Cline, D. On estimation of snow water equivalence using L-band and Ku-band radar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS’03, Toulouse, France, 21–25 July 2003; pp. 845–847.
- Shi, J. Snow water equivalence retrieval using X and Ku band dual-polarization radar. In Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 2183–2185.
- Pettinato, S.; Santi, E.; Brogioni, M.; Paloscia, S.; Palchetti, E.; Xiong, C. The potential of cosmo-skymed SAR images in monitoring snow cover characteristics. IEEE Geosci. Remote Sens. Lett. 2013, 10, 9–13. [Google Scholar] [CrossRef]
- Rott, H.; Yueh, S.H.; Cline, D.W.; Duguay, C.; Essery, R.; Haas, C.; Heliere, F.; Kern, M.; Macelloni, G.; Malnes, E. Cold regions hydrology high-resolution observatory for snow and cold land processes. Proc. IEEE 2010, 98, 752–765. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Dong, X.; Zhao, T.; Liu, H.; Wang, Z.; Du, J.; Jiang, L.; Du, Y.; Ji, D.; Xiong, C. Observing earth’s water cycle from space. In Proceedings of the SPIE International Asia-Pacific Environmental Remote Sensing Symposium, Beijing, China, 13–16 October 2014.
- Shi, J.; Hensley, S.; Dozier, J. Mapping snow cover with repeat pass synthetic aperture radar. In Proceedings of the IEEE International Geoscience and Remote Sensing, IGARSS’97, Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 628–630.
- Guneriussen, T.; Høgda, K.A.; Johnsen, H.; Lauknes, I. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2101–2108. [Google Scholar] [CrossRef]
- Tsang, L.; Pan, J.; Liang, D.; Li, Z.; Cline, D.W.; Tan, Y. Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE Trans. Geosci. Remote Sens. 2007, 45, 990–1004. [Google Scholar] [CrossRef]
- Du, J.; Shi, J.; Rott, H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model. Remote Sens. Environ. 2010, 114, 1089–1098. [Google Scholar] [CrossRef]
- Santi, E.; Brogioni, M.; Paloscia, S.; Pettinato, S.; Palchetti, E.; Xiong, C.; Crepaz, A. Combined use of experimental data and a multi-layer model for investigating the sensitivity of microwave indexes to snow parameters. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013.
- Ding, K.-H.; Xu, X.; Tsang, L. Electromagnetic scattering by bicontinuous random microstructures with discrete permittivities. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3139–3151. [Google Scholar] [CrossRef]
- Chen, K.-S.; Wu, T.-D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Morrison, K.; Rott, H.; Nagler, T.; Rebhan, H.; Wursteisen, P. The saralps-2007 measurement campaign on X and Ku-band backscatter of snow. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Barcelona, Spain, 23–28 July 2007; pp. 1207–1210.
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Fung, A.K.; Chen, K.-S. Microwave Scattering and Emission Models for Users; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Jiang, L.; Shi, J.; Tjuatja, S.; Dozier, J.; Chen, K.; Zhang, L. A parameterized multiple-scattering model for microwave emission from dry snow. Remote Sens. Environ. 2007, 111, 357–366. [Google Scholar] [CrossRef]
- Rott, H.; Heidinger, M.; Nagler, T.; Cline, D.; Yueh, S. Retrieval of snow parameters from Ku-band and X-band radar backscatter measurements. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Cape Town, South Africa, 12–17 July 2009.
- Chang, W.; Tan, S.; Lemmetyinen, J.; Tsang, L.; Xu, X.; Yueh, S.H. Dense media radiative transfer applied to SnowScat and SnowSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3811–3825. [Google Scholar] [CrossRef]
- Fung, A.; Kuo, N. Backscattering from multi-scale and exponentially correlated surfaces. J. Electromagn. Waves Appl. 2006, 20, 3–11. [Google Scholar] [CrossRef]
- Matzler, C. Microwave permittivity of dry snow. IEEE Trans. Geosci. Remote Sens. 1996, 34, 573–581. [Google Scholar] [CrossRef]
- Xiong, C.; Shi, J. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and monte carlo ray tracing. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 177–189. [Google Scholar] [CrossRef]
- Xu, X.; Tsang, L.; Yueh, S. Electromagnetic models of co/cross polarization of bicontinuous/DMRT in radar remote sensing of terrestrial snow at X-and Ku-band for CoReH2O and SCLP applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1024–1032. [Google Scholar] [CrossRef]
- Xiong, C.; Shi, J.; Lemmetyinen, J. Refinement of the X and Ku band dual-polarization scatterometer snow water equivalent retrieval algorithm. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 2419–2422.
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing; Artech House: Reading, MA, USA, 1982; Volume 2. [Google Scholar]
- Gabarró, C.; Portabella, M.; Talone, M.; Font, J. Toward an optimal SMOS ocean salinity inversion algorithm. IEEE Geosci. Remote Sens. Lett. 2009, 6, 509–513. [Google Scholar] [CrossRef]
- Qi, Z.; Wei, E. Analysis of cost functions for retrieving sea surface salinity. J. Ocean Univ. China 2012, 11, 147–152. [Google Scholar] [CrossRef]
- Rott, H.; Nagler, T.; Voglmeier, K.; Kern, M.; Macelloni, G.; Gai, M.; Cortesi, U.; Scheiber, R.; Hajnsek, I.; Pulliainen, J. Algorithm for retrieval of snow mass from Ku-and X-band radar backscatter measurements. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 135–138.
- Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Matzler, C. Microwave properties of ice and snow. In Solar System Ices; Springer: Dordrecht, The Netherlands, 1998; pp. 241–257. [Google Scholar]
- Lemmetyinen, J.; Kontu, A.; Pulliainen, J.; Vehviläinen, J.; Rautiainen, K.; Wiesmann, A.; Mätzler, C.; Werner, C.; Rott, H.; Nagler, T.; et al. Nordic snow radar experiment. Geosci. Instrum. Method Data Syst. Discuss. 2016, 2016, 1–23. [Google Scholar] [CrossRef]
- Werner, C.; Wiesmann, A.; Strozzi, T.; Schneebeli, M.; Mätzler, C. The snowscat ground-based polarimetric scatterometer: Calibration and initial measurements from davos switzerland. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2363–2366.
- Leppänen, L.; Kontu, A.; Vehviläinen, J.; Lemmetyinen, J.; Pulliainen, J. Comparison of traditional and optical grain-size field measurements with snowpack simulations in a taiga snowpack. J. Glaciol. 2015, 61, 151–162. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Derksen, C.; Toose, P.; Proksch, M.; Pulliainen, J.; Kontu, A.; Rautiainen, K.; Seppänen, J.; Hallikainen, M. Simulating seasonally and spatially varying snow cover brightness temperature using hut snow emission model and retrieval of a microwave effective grain size. Remote Sens. Environ. 2015, 156, 71–95. [Google Scholar] [CrossRef]
- Kern, M. CoReH2O-Cold Regions Hydrology High-Resolution Observatory. Candidate Earth Explorer Core Mission. Report for Assessment; ESA SP: Noordwijk, The Netherlands, 2008; Volume 1313. [Google Scholar]
Parameters | Minimum | Maximum | Interval |
---|---|---|---|
Optical grain radius (mm) | 0.1 | 0.6 | 0.1 |
b parameter | 0.5, 1.2, 2.5, 4.5, 6.5, 8.5, 10, 50, 90 | ||
Ice fraction | 0.15 | 0.45 | 0.1 |
Snow depth (m) | 0.1 | 1.7 | 0.4 |
Soil RMS height (cm) | 0.001 | 0.1 | 0.001 |
Soil correlation length (cm) | 1.0 | 23 | 2.0 |
Parameters | 17 January | 5 February |
---|---|---|
RMS height of ground surface | 0.95 cm | 0.95 cm |
Correlation length of ground surface | 18 cm | 18 cm |
Soil moisture of ground | 0.05 m3/m3 | 0.05 m3/m3 |
Snow depth | 38 cm | 36.6 cm |
Snow density | 260.5 kg/m3 | 278.0 kg/m3 |
X Band | Ku Band | ||||||
---|---|---|---|---|---|---|---|
VV | HH | VH | VV | HH | VH | ||
17 January | R2 | 0.83 | 0.80 | 0.82 | 0.93 | - | 0.80 |
RMSE | 0.52 dB | 0.48 dB | 0.83 dB | 0.48 dB | - | 0.55 dB | |
p-value | 0.0044 | 0.0242 | 0.0130 | 0.0001 | - | 0.0340 | |
5 February | R2 | 0.95 | 0.94 | 0.94 | 0.92 | 0.96 | 0.96 |
RMSE | 0.7 dB | 0.98 dB | 0.85 dB | 0.48 dB | 0.59 dB | 0.50 dB | |
p-value | 0.0001 | 0.0012 | 0.0008 | 0.0005 | 0.0027 | 0.0001 |
Coefficients (X) | Value | Coefficients (Ku) | Value |
---|---|---|---|
−0.0009 | 0.0038 | ||
1.0093 | 1.1871 | ||
−1.0191 | 0.4267 | ||
0.006 | 0.0118 | ||
1.3933 | 1.6587 | ||
−10.176 | −8.0115 |
Parameter | Nominal Observations |
---|---|
Frequency range | 9.2–17.8 GHz |
Polarizations | HH, HV, VH, VV |
Elevation scan range | 30°~60° * |
Elevation scan step | 10° |
Number of elevation steps | 4 |
Azimuth range ** | −166°~−142° |
Azimuth step | 6° |
Number of azimuth steps | 5 |
Signal bias | <0.5 dB |
Operating temperature | −40 °C~40 °C |
Time | Reference Value | Variance Value | RMSE/mm | Bias/mm | R2 |
---|---|---|---|---|---|
27 December 2009–19 March 2010 | 0.60 | 0.15 | 30.82 | 26.79 | 0.58 |
0.65 | 0.15 | 19.70 | 16.06 | 0.79 | |
0.70 | 0.15 | 30.03 | 24.92 | 0.75 | |
0.60 | 0.20 | 28.14 | 21.62 | 0.78 | |
0.65 | 0.20 | 32.03 | 25.69 | 0.59 | |
0.70 | 0.20 | 43.05 | 35.86 | 0.58 | |
29 October 2010–4 April 2011 | 0.75 | 0.15 | 30.58 | 23.74 | 0.81 |
0.80 | 0.15 | 16.59 | 14.46 | 0.81 | |
0.85 | 0.15 | 21.06 | 15.10 | 0.81 | |
0.75 | 0.20 | 65.26 | 53.63 | 0.77 | |
0.80 | 0.20 | 52.33 | 40.48 | 0.77 | |
0.85 | 0.20 | 41.25 | 29.23 | 0.79 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Xiong, C.; Lemmetyinen, J.; Shi, J.; Jiang, L.; Peng, B.; Li, H.; Zhao, T.; Ji, D.; Hu, T. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sens. 2016, 8, 505. https://doi.org/10.3390/rs8060505
Cui Y, Xiong C, Lemmetyinen J, Shi J, Jiang L, Peng B, Li H, Zhao T, Ji D, Hu T. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sensing. 2016; 8(6):505. https://doi.org/10.3390/rs8060505
Chicago/Turabian StyleCui, Yurong, Chuan Xiong, Juha Lemmetyinen, Jiancheng Shi, Lingmei Jiang, Bin Peng, Huixuan Li, Tianjie Zhao, Dabin Ji, and Tongxi Hu. 2016. "Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss" Remote Sensing 8, no. 6: 505. https://doi.org/10.3390/rs8060505