Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison
"> Figure 1
<p>Biome type distribution within each 3 km × 3 km validation site based on the 500-m resolution MODIS C5 land cover product. The bottom part of the plot shows biome types and the corresponding proportion of coverage within each site. EBF, DBF, ENF and DNF stand for “Evergreen Broadleaf Forest”, “Deciduous Broadleaf Forest”, “Evergreen Needleleaf Forest” and “Deciduous Needleleaf Forest”, respectively. The top part of the plot shows the biome type information entropy of each site calculated using Equation (5). Zero means there is only one biome type in the site or the site is a homorganic site. A larger entropy value means larger heterogeneity.</p> "> Figure 2
<p>Comparisons between ground measured LAI (<b>a</b>,<b>b</b>) and FPAR (<b>c</b>,<b>d</b>) with MODIS C5 (left panels) and C6 (right panels) retrievals. Fifty four true LAI, 82 effective LAI and 45 FPAR measurements are used here. The 3 km × 3 km sites dominated by different biome types are depicted by different colors. Circles (triangles) in (<b>a</b>) and (<b>b</b>) represent ground LAI measurements corrected (not corrected) for clumping.</p> "> Figure 3
<p>Global distribution of absolute differences between (<b>a</b>) MODIS and GLASS LAI; (<b>b</b>) MODIS and CYCLOPES LAI; (<b>c</b>) MODIS and GEOV1 LAI; (<b>d</b>) MODIS and CYCLOPES FPAR; and (<b>e</b>) MODIS and GEOV1 FPAR in July 2001. The spatial resolution is 0.25 degrees.</p> "> Figure 3 Cont.
<p>Global distribution of absolute differences between (<b>a</b>) MODIS and GLASS LAI; (<b>b</b>) MODIS and CYCLOPES LAI; (<b>c</b>) MODIS and GEOV1 LAI; (<b>d</b>) MODIS and CYCLOPES FPAR; and (<b>e</b>) MODIS and GEOV1 FPAR in July 2001. The spatial resolution is 0.25 degrees.</p> "> Figure 4
<p>Histograms of global LAI (<b>a</b>,<b>b</b>) and FPAR values (<b>c</b>,<b>d</b>) from four products analyzed in this study during the months of January and July of 2001. The frequency is given as the percentage of the total number of global vegetated pixels. Global mean LAI values are depicted by vertical lines. The bins used for LAI and FPAR are 0.25 and 0.05, respectively.</p> "> Figure 5
<p>Comparisons of annual averaged LAI from the MODIS, GLASS, CYCLOPES and GEOV1 products over Africa in 2001. (<b>a</b>–<b>c</b>) Absolute differences between MODIS C6 and GLASS, CYCLOPES and GEOV1; (<b>d</b>) LAI from four products along the transect in Africa between 20° E and 25° E.</p> "> Figure 6
<p>Density scatter plots of monthly MODIS LAI and three other LAI products (left: GLASS; middle: CYCLOPES; right: GEOV1) over BELMANIP sites during the time period from 2001–2005. The plots show a correlation between MODIS and other products for non-forest ((<b>a</b>–<b>c</b>) Biomes 1–4) in the first row, broadleaf forests ((<b>d</b>–<b>f</b>) Biomes 5 and 6) in the second row and needle leaf forests ((<b>g</b>–<b>i</b>) Biomes 7 and 8) in the third row. The red lines and blue lines are the 1:1 lines and regression lines derived from the scatter plots, respectively.</p> "> Figure 7
<p>Temporal comparisons of LAI and FPAR among MODIS C6, GLASS, CYCLOPES and GEOV1 products over seven validation sites. Monthly averaged LAI and FAPR values for the time period from 2001–2004 are shown here. Circles, stars and triangles represent ground measurements of true LAI, effective LAI and FPAR, respectively. The four lines plotted at the top represent variations in missing data in each year. (<b>a</b>) Grasses; (<b>b</b>) shrubs; (<b>c</b>) broadleaf crops; (<b>d</b>) savanna; (<b>e</b>) EBF; (<b>f</b>) DBF; and (<b>g</b>) ENF.</p> "> Figure 7 Cont.
<p>Temporal comparisons of LAI and FPAR among MODIS C6, GLASS, CYCLOPES and GEOV1 products over seven validation sites. Monthly averaged LAI and FAPR values for the time period from 2001–2004 are shown here. Circles, stars and triangles represent ground measurements of true LAI, effective LAI and FPAR, respectively. The four lines plotted at the top represent variations in missing data in each year. (<b>a</b>) Grasses; (<b>b</b>) shrubs; (<b>c</b>) broadleaf crops; (<b>d</b>) savanna; (<b>e</b>) EBF; (<b>f</b>) DBF; and (<b>g</b>) ENF.</p> "> Figure 8
<p>Evaluation of the MODIS LAI C6 product with temperature in the northern latitudes and precipitation in the ENSO-affected regions. (<b>a</b>) Temporal variations of the standardized anomalies of the growing season start period (April and May) averages of LAI and temperature for forest pixels in the northern latitudes; (<b>b</b>) same as (<b>a</b>), but for tundra pixels; (<b>c</b>) temporal variations of the standardized anomalies of annual summed LAI and precipitation in eastern Australia (20° S–40° S, 145° E–155° E) and northeastern Brazil (3° S–12° S, 35° W–45° W); (<b>d</b>) correlation between annual averaged LAI and annual total precipitation in the tropical latitudes (23° S–23° N). Standard deviations of LAIs and precipitations are denoted by blue shadow and horizontal error bars, respectively.</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. Global LAI/FPAR Products
2.1.1. MODIS LAI/FPAR
2.1.2. CYCLOPES LAI/FPAR
2.1.3. GLASS LAI
2.1.4. GEOV1 LAI/FPAR
2.2. Validation Sites and BELMANIP Network
2.3. Time Series of Climate Variables
3. Methodology
3.1. Direct Validation with Ground Measurements
3.1.1. Selection of Reliable Ground Measurements
3.1.2. Validation of MODIS LAI/FPAR Product
3.2. Intercomparison with Existing Global Products
3.2.1. Quality Control for Products
3.2.2. Comparison of Spatial Distribution
3.2.3. Comparison at the Site Scale
3.2.4. Temporal Comparison
3.3. Comparison with Climate Variables
4. Results and Discussion
4.1. Direct Validation
4.1.1. Characteristics of Measurements
4.1.2. Comparison with Ground Measurements
4.2. Intercomparison
4.2.1. Global LAI/FPAR Distribution
4.2.2. Continental Consistency
4.2.3. Comparison over BELMANIP Sites
4.2.4. Temporal Comparison
Temporal Continuity
Temporal Consistency
4.3. Evaluation with Climate Variables
4.3.1. LAI Variation with Surface Temperature
4.3.2. LAI Variation with Precipitation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MODIS | Moderate Resolution Imaging Spectroradiometer |
LAI | Leaf Area Index |
FPAR | Fraction of Photosynthetically-Active Radiation |
C5 | Collection 5 |
C6 | Collection 6 |
RT | Radiative Transfer |
LUT | Look-Up-Table |
BRF | Bi-directional Reflectance Factors |
NDVI | Normalized Difference Vegetation Index |
GSD | Ground Sampling Distance |
ANN | Artificial Neural Network |
GRNN | General Regression Neural Network |
tLAI | True LAI |
eLAI | Effective LAI |
QC | Quality Control |
GLASS | Global Land Surface Satellite |
BELMANIP | Benchmark Land Multisite Analysis and Intercomparison of Products |
TS | Time Series |
CRU | Climatic Research Unit |
WMO | World Meteorological Organization |
NOAA | National Oceanographic and Atmospheric Administration |
NASA | National Aeronautics and Space Administration |
EBF | Evergreen Broadleaf Forest |
DBF | Deciduous Broadleaf Forest |
ENF | Evergreen Needleleaf Forest |
DNF | Deciduous Needleleaf Forest |
ENSO | El Niño-Southern Oscillation |
References
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Myneni, R.B.; Smith, G.R.; Lotsch, A.; Friedl, M.; Morisette, J.T.; Votava, P.Ô.N.R.; Running, S.W.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: Consistency and improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef]
- Fang, H.; Wei, S.; Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Fang, H.; Jiang, C.; Li, W.; Wei, S.; Baret, F.; Chen, J.M.; Garcia-Haro, J.; Liang, S.; Liu, R.; Myneni, R.B.; et al. Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosci. 2013, 118, 529–548. [Google Scholar] [CrossRef]
- Ganguly, S.; Samanta, A.; Schull, M.A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ. 2008, 112, 4318–4332. [Google Scholar] [CrossRef]
- Steinberg, D.C.; Goetz, S.J.; Hyer, E.J. Validation of MODIS F/sub PAR/products in boreal forests of Alaska. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1818–1828. [Google Scholar] [CrossRef]
- Tan, B.; Hu, J.; Zhang, P.; Huang, D.; Shabanov, N.; Weiss, M.; Knyazikhin, Y.; Myneni, R.B. Validation of Moderate Resolution Imaging Spectroradiometer leaf area index product in croplands of Alpilles, France. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document; Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999; p. 20771. [Google Scholar]
- Majasalmi, T.; Rautiainen, M.; Stenberg, P.; Manninen, T. Validation of MODIS and GEOV1 fPAR Products in a Boreal Forest Site in Finland. Remote Sens. 2015, 7, 1359–1379. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804. [Google Scholar] [CrossRef]
- Baret, F.; Morissette, J.T.; Fernandes, R.A.; Champeaux, J.L.; Myneni, R.B.; Chen, J.; Plummer, S.; Weiss, M.; Bacour, C.; Garrigues, S.; et al. Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1794–1803. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Yan, G.; Mu, X.; Luo, J. Indirect measurement of leaf area index on the basis of path length distribution. Remote Sens. Environ. 2014, 155, 239–247. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 1995, 33, 777–787. [Google Scholar] [CrossRef]
- Yan, G.; Hu, R.; Wang, Y.; Ren, H.; Song, W.; Qi, J.; Chen, L. Scale Effect in Indirect Measurement of Leaf Area Index. IEEE Trans. Geosci. Remote Sens 2016. [Google Scholar] [CrossRef]
- Martínez, B.; García-Haro, F.J.; Camacho-de Coca, F. Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site. Agric. For. Meteorol. 2009, 149, 130–145. [Google Scholar] [CrossRef]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data. Can. J. Remote Sens. 2003, 29, 241–258. [Google Scholar] [CrossRef]
- Mayr, M.; Samimi, C. Comparing the dry season in-situ Leaf Area Index (LAI) derived from high-resolution rapideye imagery with MODIS LAI in a namibian Savanna. Remote Sens. 2015, 7, 4834–4857. [Google Scholar] [CrossRef]
- Stenberg, P. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agric. For. Meteorol. 1996, 79, 1–8. [Google Scholar] [CrossRef]
- Rajeevan, M.; Bhate, J.; Kale, J.D.; Lal, B. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr Sci. India 2006, 91, 296–306. [Google Scholar]
- GCOS. Systematic Observation Requirements for Satellite-Based Products for Climate: Supplemental Details to the Satellite-Based Component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC”; GCOS: Singapore, Singapore, 2006. [Google Scholar]
- Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Chang. Biol. 2012, 18, 656–674. [Google Scholar] [CrossRef]
- Kraus, T.; Schmidt, M.; Dech, S.W.; Samimi, C. The potential of optical high resolution data for the assessment of leaf area index in East African rainforest ecosystems. Int. J. Remote Sens. 2009, 30, 5039–5059. [Google Scholar] [CrossRef]
- Buermann, W. Analysis of a multiyear global vegetation leaf area index data set. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; Myneni, R. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sen. 2013, 5, 927–948. [Google Scholar]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann—Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Boening, C.; Willis, J.K.; Landerer, F.W.; Nerem, R.S.; Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A.; Camargo, H.; Riveros, M.P.; Pabló, A.D. Two contrasting severe seasonal extremes in tropical South America in 2012: Flood in Amazonia and drought in northeast Brazil. J. Clim. 2013, 26, 9137–9154. [Google Scholar] [CrossRef]
Product | GSD | Frequency | Projection | Sensor | Main Algorithm | LAI Type | Ref. |
---|---|---|---|---|---|---|---|
MODIS C5 | 1 km | 8-day | SIN 4 | MODIS | LUT based on 3D RT | tLAI | [2,14] |
MODIS C6 | 500 m | 8-day | SIN | MODIS | LUT based on 3D RT | tLAI | [5] |
GLASS 1 V03 | 1 km | 8-day | SIN | MODIS | GRNN trained with CYC* 5 and MOD 6 | tLAI | [3,16] |
CYC 2 V3.1 | 1/112° | 10-day | Plate Carrée | VGT | ANN trained with 1D RT | eLAI | [17,18] |
GEOV1 3 V1.3 | 1/112° | 10-day | Plate Carrée | VGT | ANN trained with CYC and MOD | Fused with tLAI and eLAI | [4,8] |
Product | Quality Flag | Snow | Cloud | Shadow | Aerosol | Cirrus | Suspect | Overall |
---|---|---|---|---|---|---|---|---|
MODIS | FparLaiQC | Clear | Clear | - | No | No | - | - |
FparExtraQC | - | Clear | Clear | - | - | - | Good | |
GLASS | QC | Clear | Clear | Clear | - | - | - | Good |
CYCLOPES | SM | Clear | - | - | Pure | - | No | Good |
GEOV1 | QFLAG | Clear | - | - | Pure | - | No | Good |
Biome Type | # of tLAI | Ground tLAI | MODIS C5 LAI | MODIS C6 LAI | # of eLAI | Ground eLAI | MODIS C5 LAI | MODIS C6 LAI | # of FPAR | Ground FPAR | MODIS C5 FPAR | MODIS C6 FPAR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 1 | 12 | 1.37 ± 1.01 | 1.20 ± 0.80 | 1.32 ± 0.85 | 49 | 0.93 ± 0.94 | 0.83 ± 0.50 | 0.94 ± 0.62 | 36 | 0.26 ± 0.24 | 0.32 ± 0.14 | 0.33 ± 0.16 |
B2 2 | 2 | 0.18 ± 0.19 | 0.21 ± 0.01 | 0.21 ± 0.01 | 1 | 0.03 ± 0.00 | 0.20 ± 0.00 | 0.20 ± 0.00 | 2 | 0.26 ± 0.34 | 0.28 ± 0.21 | 0.31 ± 0.24 |
B3 3 | 0 | N/A | N/A | N/A | 3 | 2.14 ± 0.75 | 2.09 ± 0.43 | 2.14 ± 0.55 | 0 | N/A | N/A | N/A |
B4 4 | 15 | 1.61 ± 0.55 | 1.43 ± 0.69 | 1.46 ± 0.47 | 15 | 1.26 ± 0.36 | 1.43 ± 0.69 | 1.46 ± 0.47 | 4 | 0.44 ± 0.14 | 0.56 ± 0.18 | 0.53 ± 0.15 |
B5 5 | 2 | 4.65 ± 0.39 | 4.44 ± 1.66 | 4.65 ± 0.39 | 2 | 3.27 ± 0.18 | 4.44 ± 1.66 | 4.95 ± 1.02 | 2 | 0.92 ± 0.04 | 0.73 ± 0.20 | 0.79 ± 0.10 |
B6 6 | 14 | 3.58 ± 0.40 | 3.77 ± 0.99 | 3.79 ± 0.82 | 7 | 3.78 ± 1.26 | 4.74 ± 1.10 | 4.67 ± 0.59 | 0 | N/A | N/A | N/A |
B7 7 | 9 | 2.69 ± 0.76 | 2.58 ± 1.08 | 2.42 ± 0.73 | 5 | 1.72 ± 0.48 | 2.31 ± 0.80 | 2.60 ± 0.97 | 1 | 0.49 ± 0.00 | 0.53 ± 0.00 | 0.61 ± 0.00 |
B8 8 | 0 | N/A | N/A | N/A | 0 | N/N | N/A | N/A | 0 | N/A | N/A | N/A |
Overall | 54 | 2.31 ± 1.26 | 2.25 ± 1.46 | 2.28 ± 1.38 | 82 | 1.37 ± 1.21 | 1.49 ± 1.36 | 1.59 ± 1.35 | 45 | 0.31 ± 0.27 | 0.36 ± 0.18 | 0.38 ± 0.19 |
Biomes | MODIS-GLASS | MODIS-CYCLOPES | MODIS-GEOV1 | GLASS-CYCLOPES | GLASS-GEOV1 | CYCLOPES-GEOV1 | |
---|---|---|---|---|---|---|---|
LAI | 1–4 | 0.82/0.41/y = 1.03x + 0.10 | 0.83/0.36/y = 0.94x − 0.01 | 0.81/0.42/y = 1.05x − 0.03 | 0.86/0.34/y = 0.85x − 0.03 | 0.83/0.41/y = 0.94x − 0.06 | 0.95/0.23/y = 1.09x − 0.01 |
5–6 | 0.82/0.63/y = 0.66x + 1.11 | 0.72/0.66/y = 0.50x + 0.81 | 0.79/0.74/y = 0.69x + 0.73 | 0.77/0.59/y = 0.69x + 0.17 | 0.80/0.72/y = 1.03x + 0.10 | 0.89/0.55/y = 1.26x + 0.05 | |
7–8 | 0.63/0.62/y = 0.74x + 0.86 | 0.58/0.59/y = 0.65x + 0.66 | 0.64/0.61/y = 0.76x + 0.64 | 0.65/0.57/y = 0.73x + 0.25 | 0.70/0.60/y = 0.86x + 0.16 | 0.85/0.43/y = 1.07x + 0.06 | |
All | 0.90/0.53/y = 0.83x + 0.31 | 0.83/0.53/y = 0.64x + 0.26 | 0.88/0.56/y = 0.82x + 0.19 | 0.89/0.44/y = 0.74x + 0.06 | 0.91/0.50/y = 0.95x − 0.06 | 0.95/0.36/y = 1.23x − 0.07 | |
FPAR | 1–4 | N/A | 0.89/0.07/y = 1.04x − 0.08 | 0.88/0.08/y = 1.17x − 0.08 | N/A | N/A | 0.97/0.04/y = 1.12x + 0.01 |
5–6 | N/A | 0.75/0.08/y = 0.77x + 0.07 | 0.80/0.08/y = 0.88x + 0.09 | N/A | N/A | 0.93/0.05/y = 1.06x + 0.06 | |
7–8 | N/A | 0.53/0.10/y = 0.75x + 0.09 | 0.59/0.10/y = 0.82x + 0.12 | N/A | N/A | 0.82/0.07/y = 0.93x + 0.11 | |
All | N/A | 0.91/0.08/y = 0.95x − 0.05 | 0.91/0.09/y = 1.08x − 0.05 | N/A | N/A | 0.97/0.05/y = 1.12x + 0.01 |
Site and Biome | MODIS-GLASS | MODIS-CYCLOPES | MODIS-GEOV1 | GLASS-CYCLOPES | GLASS-GEOV1 | CYCLOPES-GEOV1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
#78:B1 | 0.96 | 0.14 | 0.91(0.91) | 0.17(0.09) | 0.94(0.93) | 0.15(0.07) | 0.95 | 0.16 | 0.94 | 0.17 | 0.97(0.97) | 0.10(0.05) |
#88:B2 | 0.65 | 0.12 | 0.61(0.69) | 0.20(0.11) | 0.76(0.60) | 0.16(0.10) | 0.82 | 0.11 | 0.87 | 0.10 | 0.86(0.88) | 0.10(0.06) |
#1:B3 | 0.98 | 0.66 | 0.96(0.96) | 0.62(0.08) | 0.93(0.94) | 0.95(0.10) | 0.98 | 0.20 | 0.94 | 0.39 | 0.95(0.98) | 0.45(0.05) |
#103:B4 | 0.84 | 0.21 | 0.75(0.72) | 0.42(0.10) | 0.79(0.80) | 0.40(0.06) | 0.89 | 0.42 | 0.90 | 0.38 | 0.96(0.95) | 0.1(0.06) |
#96:B5 | 0.08 | 1.01 | 0.01(0.00) | 2.56(0.19) | 0.00(0.00) | 1.70(0.08) | 0.53 | 1.61 | 0.45 | 0.76 | 0.81(0.80) | 1.01(0.13) |
#58:B6 | 0.54 | 1.12 | 0.89(0.66) | 0.57(0.12) | 0.86(0.66) | 0.56(0.08) | 0.50 | 1.15 | 0.48 | 1.12 | 0.91(0.76) | 0.74(0.10) |
#68:B7 | 0.89 | 0.72 | 0.45(0.34) | 0.69(0.12) | 0.74(0.64) | 0.68(0.06) | 0.57 | 0.81 | 0.83 | 0.53 | 0.76(0.58) | 0.74(0.11) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens. 2016, 8, 460. https://doi.org/10.3390/rs8060460
Yan K, Park T, Yan G, Liu Z, Yang B, Chen C, Nemani RR, Knyazikhin Y, Myneni RB. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sensing. 2016; 8(6):460. https://doi.org/10.3390/rs8060460
Chicago/Turabian StyleYan, Kai, Taejin Park, Guangjian Yan, Zhao Liu, Bin Yang, Chi Chen, Ramakrishna R. Nemani, Yuri Knyazikhin, and Ranga B. Myneni. 2016. "Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison" Remote Sensing 8, no. 6: 460. https://doi.org/10.3390/rs8060460
APA StyleYan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R. R., Knyazikhin, Y., & Myneni, R. B. (2016). Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sensing, 8(6), 460. https://doi.org/10.3390/rs8060460