Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications
"> Figure 1
<p>An example of the MODIS Land Surface Temperature product on 3 April 2015 (01:30 PM) that demonstrates cloud obstruction (e.g., WA, SA, NSW and ACT) which affects the availability of this Land Surface Temperature product. Note that the gray shading is an area that was not observed by the MODIS sensor on that particular day. Also, this figure presents the abbreviations for the Australian states that will be further used for reference purposes.</p> "> Figure 2
<p>The high agreement between the anomalies Land Surface Temperature products from MODIS and AMSR2 expressed in R<sup>2</sup> (<b>a</b>) for day time observations; SE (<b>b</b>) for day time observations; R<sup>2</sup> (<b>c</b>) for night time observations and SE (<b>d</b>) for night time observations.</p> "> Figure 3
<p>Histograms of the anomalies that show the agreement between the Land Surface Temperature products from MODIS and AMSR2 expressed in R<sup>2</sup> (<b>a</b>) for day time observations, SE (<b>b</b>) for day time observations, R<sup>2</sup> (<b>c</b>) for night time observations and SE (<b>d</b>) for night time observations.</p> "> Figure 4
<p>Pixel based scaling parameters (slope and offset) for MODIS Land Surface Temperature and AMSR2 (T<sub>b, 37V</sub>) observations. The slope (<b>a</b>); offset (<b>b</b>) and the sample sizes (<b>c</b>) for day-time observations and the slope (<b>d</b>); offset (<b>e</b>) and the sample sizes (<b>f</b>) for night-time observations.</p> "> Figure 5
<p>R<sup>2</sup> between the anomalies from MERRA and (<b>a</b>) MODIS; (<b>b</b>) the merged MODIS-AMSR2 Land Surface Temperature product and (<b>c</b>) AMSR2, as well as the percentage of gained samples through the addition of AMSR2 observations (<b>d</b>).</p> "> Figure 6
<p>Histograms that show the agreement between the anomalies from MERRA Land Surface Temperature and the remotely sensed Land Surface Temperature products from MODIS (<b>a</b>); AMSR2 (<b>b</b>) and through the presented combination approach (<b>c</b>) expressed in R<sup>2</sup>.</p> "> Figure 7
<p>Australia’s major climate zones according to the Köppen-Geiger climate classification. Several sub categories of the more detailed classification were merged into these four major classes.</p> "> Figure 8
<p>An example of the individual MODIS LST product for 3 April 2015 (<b>a</b>); the combined Land Surface Temperature product (<b>b</b>) and a spatial map (<b>c</b>) that demonstrates the sensors that were used in the combined Land Surface Temperature product. The Land Surface Temperature product in the gray shading is based on MODIS whereas the cyan regions are based on scaled AMSR2 observations.</p> "> Figure 9
<p>A recent flooding example for the Hunter Valley along Australia’s central coast demonstrating the combination approach and its usefulness for warning systems. This area experienced severe flooding after receiving significant amounts of precipitation on 21 and 22 April 2015. This timeseries demonstrates the successful scaling of AMSR2 observations resulting in an increasing number of Land Surface Temperture observations. (<b>a</b>) LST products during the day; (<b>b</b>) LST products during the night; (<b>c</b>) precipitation from the Australian Water Availability Project.</p> ">
Abstract
:1. Introduction
2. Land Surface Temperature Data
2.1. MODIS
2.2. AMSR2
2.3. MERRA
3. Methodology and Results
3.1. Comparing Existing Products
3.2. Linear Scaling of Microwave Observations
3.3. A Comparison against MERRA
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.; Cosh, M.; Basara, J. Passive microwave soil moisture downscaling using vegetation and surface temperatures. Vadose Zone J. 2013. [Google Scholar] [CrossRef]
- Fang, B.; Laskshmi, V. Soil moisture at watershed scale: Remote sensing techniques. J. Hydrol. 2014, 516, 258–272. [Google Scholar] [CrossRef]
- Lakshmi, V. A simple surface temperature assimilation scheme for use in land surface models. Water Resour. Res. 2000, 36, 3687–3700. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Lakshmi, V.; Johnson, F.M.; Sharma, A. A new framework for monitoring flood inundation using readily available satellite data. Geophys. Res. Lett. 2016. in revision. [Google Scholar]
- Wan, Z.; Li, Z.-L. A Physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Bosilovich, M. A comparison of MODIS land surface temperature with in situ observations. Geophys. Res. Lett. 2006, 33, L20112. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Jeu, R.; Holmes, T.; Walker, J. Comparison of microwave and infrared land surface temperature products over the NAFE’ 06 research sites. IEEE Geosci. Remote Sens. Lett. 2008, 5, 783–787. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Validation of the land surface temperature products retrieved from TERRA moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- De Nijs, A.H.A.; Parinussa, R.M.; Jeu, R.A.M.; Schellekens, J.; Holmes, T.R.H. A methodology to determine radio frequency interference in AMSR2 observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5147–5159. [Google Scholar] [CrossRef]
- Holmes, T.; Jeu, R.; Owe, M.; Dolman, A. Land surface temperature from Ka-band passive microwave observations. J. Geophys. Res. Atmos. 2009, 114, D04113. [Google Scholar] [CrossRef]
- Rienecker, M.; Suarez, M.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.; Schubert, S.; Takacs, L.; Kim, G.; et al. MERRA—NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Scipal, K.; Holmes, T.R.H.; Jeu, R.A.M.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error structure of global soil moisture datasets. Geophys. Res. Lett. 2008, 35, L24403. [Google Scholar] [CrossRef]
- Jeu, R.; Wagner, W.; Holmes, T.; Dolman, A.; Giesen, N.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef]
- Owe, M.; Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Jeu, R.A.M.; Guichard, F.; Haris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Jones, D.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Parinussa, R.M.; Meesters, A.; Liu, Y.; Dorigo, W.; Wagner, W.; Jeu, R. Error estimates for near real time satellite soil moisture as derived from the land parameter retrieval model. IEEE Geosci. Remote Sens. Lett. 2011, 8, 779–783. [Google Scholar] [CrossRef]
Night Time Observations | Day Time Observations | |||
---|---|---|---|---|
No Masking | Tb, 37V < 259.8 Masked | No Masking | Tb, 37V < 259.8 Masked | |
R2 | 0.561 (0.844) | 0.563 (0.847) | 0.478 (0.818) | 0.480 (0.819) |
SE | 1.888 (2.012) | 1.885 (2.000) | 3.189 (3.461) | 3.183 (3.451) |
MERRA | Climate Zone | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tropical | Arid Desert | Arid Steppe | Temperate | ||||||
R2 | SE | R2 | SE | R2 | SE | R2 | SE | ||
Night Time | MODIS | 0.20 (0.56) | 2.17 (2.52) | 0.30 (0.84) | 2.59 (2.74) | 0.27 (0.77) | 2.55 (2.78) | 0.16 (0.64) | 2.68 (2.85) |
AMSR2 | 0.12 (0.36) | 3.29 (2.76) | 0.19 (0.73) | 3.21 (3.41) | 0.16 (0.64) | 3.30 (3.34) | 0.11 (0.62) | 3.25 (2.73) | |
MODIS-AMSR2 | 0.11 (0.30) | 2.80 (3.39) | 0.22 (0.71) | 3.12 (3.66) | 0.19 (0.61) | 3.11 (3.64) | 0.13 (0.55) | 2.80 (3.21) | |
Day Time | MODIS | 0.09 (0.50) | 4.02 (4.35) | 0.33 (0.83) | 3.63 (4.19) | 0.30 (0.74) | 3.95 (4.33) | 0.39 (0.81) | 3.52 (3.84) |
AMSR2 | 0.22 (0.43) | 4.11 (4.58) | 0.39 (0.76) | 4.11 (5.29) | 0.38 (0.68) | 4.10 (5.13) | 0.43 (0.73) | 3.73 (4.73) | |
MODIS-AMSR2 | 0.13 (0.40) | 4.77 (5.58) | 0.32 (0.71) | 4.83 (6.03) | 0.30 (0.63) | 4.92 (5.93) | 0.37 (0.68) | 4.41 (5.58) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parinussa, R.M.; Lakshmi, V.; Johnson, F.; Sharma, A. Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications. Remote Sens. 2016, 8, 162. https://doi.org/10.3390/rs8020162
Parinussa RM, Lakshmi V, Johnson F, Sharma A. Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications. Remote Sensing. 2016; 8(2):162. https://doi.org/10.3390/rs8020162
Chicago/Turabian StyleParinussa, Robert M., Venkat Lakshmi, Fiona Johnson, and Ashish Sharma. 2016. "Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications" Remote Sensing 8, no. 2: 162. https://doi.org/10.3390/rs8020162