Ability of the Photochemical Reflectance Index to Track Light Use Efficiency for a Sub-Tropical Planted Coniferous Forest
"> Figure 1
<p>Variability of PRI with different view angles at different times. (<b>a</b>) and (<b>b</b>) used data obtained from 10:45 a.m. to 11 a.m. on day 218, while (<b>c</b>) and (<b>d</b>) used data obtained from 14:45 to 15:00; (<b>a</b>) and (c) showed variability of PRI with different view azimuth angles (VAA) and view zenith angles (VZA); (<b>b</b>) and (<b>d</b>) illustrated PRI variations in relation to the angle between sun and viewer (θ<span class="html-italic"><sub>r</sub></span>).</p> "> Figure 1 Cont.
<p>Variability of PRI with different view angles at different times. (<b>a</b>) and (<b>b</b>) used data obtained from 10:45 a.m. to 11 a.m. on day 218, while (<b>c</b>) and (<b>d</b>) used data obtained from 14:45 to 15:00; (<b>a</b>) and (c) showed variability of PRI with different view azimuth angles (VAA) and view zenith angles (VZA); (<b>b</b>) and (<b>d</b>) illustrated PRI variations in relation to the angle between sun and viewer (θ<span class="html-italic"><sub>r</sub></span>).</p> "> Figure 2
<p>Seasonal variations of (<b>a</b>) SM (at 5 cm), Ta, VPD; (<b>b</b>) GPP, CI, PAR; and (<b>c</b>) PRI, LUE measured every half hour from 7 a.m. to 17:30 when the solar zenith angles were less than 75°. The solid lines indicated 50 samples’ moving averages. The red rectangle indicated the depression period.</p> "> Figure 3
<p>Relationships of half-hourly bioclimatic parameters (<span class="html-italic">i.e.</span>, VPD, PAR, and Ta) with LUE (<b>a</b>–<b>c</b>); and with PRI (<b>d</b>–<b>f</b>) observed from 9 a.m. to 16:30 each day across the season.</p> "> Figure 4
<p>Correlation coefficients (<span class="html-italic">R</span>) of half-hourly PRI with LUE on individual days, with data acquired from 9 a.m. to 16:30. The length of error-bars represents the <span class="html-italic">p</span>-value of each linear regression. PR: positive correlation, NR: negative correlation.</p> "> Figure 5
<p>Relationships between (<b>a</b>) half-hourly and (<b>b</b>) daily average PRI and LUE calculated using data observed from 9 a.m. to 16:30 each day throughout the study period.</p> "> Figure 6
<p>Logarithmic relationships between daily average PRI and LUE calculated using data observed from 9 a.m, to 16:30 each day for six months (<b>Apr</b>.–<b>Sep.</b>).</p> "> Figure 7
<p>Variations of linear coefficients of determination (<span class="html-italic">R</span><sup>2</sup>) between PRI or LUE and the three bioclimatic parameters (<span class="html-italic">i.e.</span>, VPD, PAR, and Ta) observed from 9 a.m. to 16:30 each day at monthly interval.</p> "> Figure 8
<p>Average diurnal correlation coefficients (<span class="html-italic">R</span>) of half-hourly PRI with LUE in relation to (<b>a</b>–<b>e</b>) individual bioclimatic factors or (<b>f</b>) GPP throughout the whole season. Error bars indicated one standard deviation.</p> "> Figure 9
<p>(<b>a</b>–<b>f</b>) Diurnal correlation coefficients (<span class="html-italic">R</span>) between PRI and LUE as affected by two bioclimatic factors.</p> "> Figure 9 Cont.
<p>(<b>a</b>–<b>f</b>) Diurnal correlation coefficients (<span class="html-italic">R</span>) between PRI and LUE as affected by two bioclimatic factors.</p> "> Figure 10
<p>Schematic drawing of iAMSPEC II.</p> "> Figure 11
<p>Picture of outdoor part of iAMSPEC II on the tower.</p> "> Figure 12
<p>(<b>A</b>) is the relationship between APAR calculated with FPAR and two-leaf APAR (TL_APAR) calculated using the two-leaf LUE model; Linear relationships between half-hourly mean PRI and LUE observed from 9 h to 16 h each day for the entire study period (<b>B</b>) and six months (<b>Apr</b>.–<b>Sep</b>.).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Flux Data and LUE Calculation
2.3. Multi-Angle Spectral Observations
2.3.1. iAMSPEC II System
2.3.2. Spectra Preprocessing
2.4. Statistical Data Analysis
3. Results
3.1. Variability of PRI with Multiple View Angles
3.2. Seasonal Patterns of Bioclimatic Factors, Productivity, PRI, and LUE
3.3. Temporal Variation of the Relationship between PRI and LUE
3.4. Effects of Bioclimatic Factors on the Ability of PRI as a Proxy of LUE
R2 | Ta (ºC) | |||||
<20 | 20–25 | 25–30 | 30–35 | >35 | ||
VPD(hPa) | <10 | 0.0943 *** | 0.0432 | 0.0189 | 0 | 0 |
(175) | (289) | (222) | (0) | (0) | ||
10–20 | 0 | 0.2352*** | 0.0693*** | 0.0908*** | 0 | |
(0) | (66) | (439) | (321) | (0) | ||
20–30 | 0 | 0 | 0.3203** | 0.1800*** | 0.6266* | |
(0) | (0) | (23) | (467) | (9) | ||
30–40 | 0 | 0 | 0 | 0.1239*** | 0.3155*** | |
(0) | (0) | (0) | (73) | (106) | ||
>40 | 0 | 0 | 0 | 0 | 0.1966*** | |
(0) | (0) | (0) | (0) | (33) | ||
R2 | CI | |||||
<0.15 | 0.15–0.30 | 0.30–0.50 | 0.50–0.70 | >0.70 | ||
VPD(hPa) | <10 | 0.0095 | 0.0119 | 0.0008 | 0.0031n | 0.1161 |
(241) | (242) | (131) | (62) | (10) | ||
10–20 | 0.0537 | 0.0133 | 0.0154 | 0.0009n | 0.0058n | |
(32) | (162) | (267) | (268) | (97) | ||
20–30 | 0 | 0.0977 | 0.1003*** | 0.0744*** | 0.0112n | |
(0) | (33) | (92) | (217) | (157) | ||
30–40 | 0 | 0 | 0.5707*** | 0.1025*** | 0.2105*** | |
(0) | (0) | (14) | (99) | (66) | ||
>40 | 0 | 0 | 0 | 0.0598 | 0.4611* | |
(0) | (0) | (0) | (21) | (12) | ||
R2 | PAR (MJ m−2 hh−1) | |||||
<0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 | >0.60 | ||
VPD(hPa) | <10 | 0.0123* | 0.0011 | 0.0073 | 0.0000 | 0 |
(345) | (272) | (57) | (12) | (0) | ||
10–20 | 0.0925** | 0.0165* | 0.0342** | 0.0006 | 0.0797n | |
(84) | (272) | (266) | (181) | (23) | ||
20–30 | 0.1201 | 0.0888* | 0.1677*** | 0.0511** | 0.0348 | |
(15) | (58) | (135) | (184) | (107) | ||
30–40 | 0 | 0 | 0.2534*** | 0.0824* | 0.1741*** | |
(0) | (0) | (45) | (69) | (65) | ||
>40 | 0 | 0 | 0.0711 | 0.2337 | 0.4024* | |
(0) | (0) | (7) | (16) | (10) | ||
R2 | PAR (MJ m−2 hh−1) | |||||
<0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 | >0.60 | ||
Ta (ºC) | <20 | 0.0271 | 0.0006 | 0.1302 | 0.4787n | 0 |
(137) | (27) | (8) | (4) | (0) | ||
20–25 | 0.0074 | 0.0034 | 0.2280*** | 0.0642 | 0 | |
(135) | (144) | (47) | (29) | (0) | ||
25–30 | 0.0570** | 0.0109 | 0.0045 | 0.0399 | 0.0317n | |
(131) | (288) | (169) | (90) | (6) | ||
30–35 | 0.0662 | 0.022 | 0.2367*** | 0.0674*** | 0.0959*** | |
(40) | (143) | (252) | (278) | (147) | ||
>35 | 0 | 0.5467 | 0.3722*** | 0.3053*** | 0.3409*** | |
(0) | (5) | (30) | (63) | (50) | ||
R2 | CI | |||||
<0.15 | 0.15–0.30 | 0.30–0.50 | 0.50–0.70 | >0.70 | ||
Ta (ºC) | <20 | 0.0223 | 0.0003 | 0.0229 | 0.0244 | 0 |
(108) | (40) | (19) | (9) | (0) | ||
20–25 | 0.0004 | 0.0412* | 0.0004 | 0.1000* | 0.1702 | |
(93) | (118) | (77) | (47) | (20) | ||
25–30 | 0.0737* | 0.0160 | 0.0006 | 0.0039 | 0.0435 | |
(63) | (185) | (215) | (177) | (44) | ||
30–35 | 0.0001 | 0.0179 | 0.1420*** | 0.0810*** | 0.0079 | |
(12) | (90) | (182) | (348) | (228) | ||
>35 | 0 | 0 | 0.5091** | 0.3115*** | 0.3809*** | |
(0) | (0) | (13) | (87) | (48) | ||
R2 | PAR (MJ m−2 hh−1) | |||||
<0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 | >0.60 | ||
CI | <0.15 | 0.0124 | 0 | 0 | 0 | 0 |
(276) | (0) | (0) | (0) | (0) | ||
0.15–0.30 | 0.0402** | 0.0061 | 0 | 0 | 0 | |
(168) | (266) | (0) | (0) | (0) | ||
0.30–0.50 | 0 | 0.0006n | 0.0619*** | 0 | 0 | |
(0) | (291) | (214) | (0) | (0) | ||
0.50–0.70 | 0 | 0.0133n | 0.0770*** | 0.1285*** | 0.2985*** | |
(0) | (49) | (248) | (330) | (39) | ||
>0.70 | 0 | 0 | 0.005n | 0.0657** | 0.2805*** | |
(0) | (0) | (45) | (131) | (166) |
4. Discussion
4.1. Feasibility of PRI to Indicate LUE
4.2. Uncertainties in the Relationship between PRI and LUE
4.3. Unresolved Questions
5. Conclusions
- (1)
- Both half-hourly PRI and LUE decreased with increases of VPD, Ta, and PAR. LUE is more sensitive to changes of these bioclimatic factors than PRI. Significantly positive diurnal correlations between PRI and LUE were mostly found on clear or partially cloudy days.
- (2)
- Significant logarithmic relationships were found between LUE and PRI at both half-hourly and daily scales across the study period. Correlations of PRI with LUE varied dramatically throughout the growing season. The correlation was the strongest (R2 = 0.6427, p < 0.001) in July and the poorest in May.
- (3)
- The ability of PRI to track LUE varied with bioclimatic factors. Generally, the effectiveness of PRI in indicating diurnal change of LUE increased with the increases of VPD, Ta, and PAR. As to the entire study period, PRI is more effective in detecting the changes of LUE under clear or partially cloudy skies (CI > 0.3) with moderate to high VPD (>20 hPa) and high temperatures (>31 °C).
- (4)
- Overall, we found that PRI is most sensitive to variations in LUE under stressed conditions, and the sensitivity decreases as the growing conditions become favorable when atmosphere water vapor, temperature and soil moisture are near the optimum conditions.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Appendix A. Description of iAMSPEC II
Appendix B. Two-Leaf Algorithm for LUE Calculation
Appendix C. Performance of LUEc Calculated Using Two-Leaf Algorithm
References
- Kumar, M.; Monteith, J.L. Remote sensing of crop growth. In Plants and the Daylight Spectrum; Academic Press: London, UK, 1981; pp. 133–144. [Google Scholar]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Hall, F.G.; Black, T.A.; Wulder, M.A.; Nesic, Z.; Krishnan, P. Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sens. Environ. 2008, 112, 2777–2788. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. R. Soc. Lond. Philos. Trans. Ser. B 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Chen, J.M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15). Algorithm Theor. Basis Doc. 1999, 4, 1–14. [Google Scholar]
- Tian, Y.; Zhang, Y.; Knyazikhin, Y.; Myneni, R.B.; Glassy, J.M.; Dedieu, G.; Running, S.W. Prototyping of MODIS LAI and FPAR algorithm with Lasur and Landsat data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2387–2401. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Nemani, R.R.; Bi, J.; Piao, S.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Tan, K.P.; Kanniah, K.D.; Cracknell, A.P. A review of remote sensing based productivity models and their suitability for studying oil palm productivity in tropical regions. Prog. Phys. Geogr. 2012, 36, 655–679. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Wulder, M.A.; Black, T.A.; Guy, R.D. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Sci. Total Environ. 2008, 404, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Goetz, S.J.; Prince, S.D. Modelling terrestrial carbon exchange and storage: Evidence and implications of functional convergence in light-use efficiency. Adv. Ecol. Res. 1999, 28, 57–92. [Google Scholar]
- Lagergren, F.; Eklundh, L.; Grelle, A.; Lundblad, M.; Mölder, M.; Lankreijer, H.; Lindroth, A. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ. 2005, 28, 412–423. [Google Scholar] [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Goni, D.; Deng, B.; Grimmond, C.S.B.; Schmid, H.P.; Scott, S.L. The role of sky conditions on gross primary production in a mixed deciduous forest. Agric. For. Meteorol. 2011, 151, 781–791. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, G.R.; Zhuang, J.; Gentry, R.; Fu, Y.L.; Sun, X.M.; Zhang, L.M.; Wen, X.F.; Wang, Q.F.; Han, S.J. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agric. For. Meteorol. 2011, 151, 803–816. [Google Scholar] [CrossRef]
- Drolet, G.G.; Huemmrich, K.F.; Hall, F.G.; Middleton, E.M.; Black, T.A.; Barr, A.G.; Margolis, H.A. A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest. Remote Sens. Environ. 2005, 98, 212–224. [Google Scholar] [CrossRef]
- Drolet, G.G.; Middleton, E.M.; Huemmrich, K.F.; Hall, F.G.; Amiro, B.D.; Barr, A.G.; Black, T.A.; McCaughey, J.H.; Margolis, H.A. Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sens. Environ. 2008, 112, 3064–3078. [Google Scholar] [CrossRef]
- Hall, F.G.; Hilker, T.; Coops, N.C.; Lyapustin, A.; Huemmrich, K.F.; Middleton, E.; Margolis, H.; Drolet, G.; Black, T.A. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sens. Environ. 2008, 112, 3201–3211. [Google Scholar] [CrossRef]
- Gamon, J.A.; Bond, B. Effects of irradiance and photosynthetic downregulation on the photochemical reflectance index in douglas-fir and ponderosa pine. Remote Sens. Environ. 2013, 135, 141–149. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Ogaya, R.; Filella, I. Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI. Int. J. Remote Sens. 2013, 34, 1282–1296. [Google Scholar] [CrossRef]
- Rossini, M.; Fava, F.; Cogliati, S.; Meroni, M.; Marchesi, A.; Panigada, C.; Giardino, C.; Busetto, L.; Migliavacca, M.; Amaducci, S. Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS J. Photogramm. Remote Sens. 2013, 86, 168–177. [Google Scholar] [CrossRef]
- Nakaji, T.; Kosugi, Y.; Takanashi, S.; Niiyama, K.; Noguchi, S.; Tani, M.; Oguma, H.; Nik, A.R.; Kassim, A.R. Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia. Remote Sens. Environ. 2014, 150, 82–92. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 138–151. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Dufrêne, E.; Berveiller, D.; Delpierre, N.; Ourcival, J.-M.; Rambal, S.; Joffre, R. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sens. Environ. 2014, 144, 73–84. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Peñuelas, J.; Garbulsky, M.F.; Filella, I. Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol. 2011, 191, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Demmig-Adams, B.; Adams, W.W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1996, 1, 21–26. [Google Scholar] [CrossRef]
- Barton, C.V.M.; North, P.R.J. Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis. Remote Sens. Environ. 2001, 78, 264–273. [Google Scholar] [CrossRef]
- Hall, F.G.; Hilker, T.; Coops, N.C. Photosynsat, photosynthesis from space: Theoretical foundations of a satellite concept and validation from tower and spaceborne data. Remote Sens. Environ. 2011, 115, 1918–1925. [Google Scholar] [CrossRef]
- Hilker, T.; Leeuwen, M.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a douglas-fir dominated forest stand. Trees 2010, 24, 819–832. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Schwalm, C.R. Effects of mutual shading of tree crowns on prediction of photosynthetic light-use efficiency in a coastal douglas fir forest. Tree Physiol. 2008, 28, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Mõttus, M.; Takala, T.L.; Stenberg, P.; Knyazikhin, Y.; Yang, B.; Nilson, T. Diffuse sky radiation influences the relationship between canopy PRI and shadow fraction. ISPRS J. Photogramm. Remote Sens. 2015, 105, 54–60. [Google Scholar] [CrossRef]
- Damm, A.; Guanter, L.; Verhoef, W.; Schläpfer, D.; Garbari, S.; Schaepman, M. Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens. Environ. 2015, 156, 202–215. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficienciesa review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J.; Llorens, L.; Estiarte, M. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 2004, 90, 308–318. [Google Scholar] [CrossRef]
- Filella, I.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.; Peñuelas, J. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 2009, 30, 4443–4455. [Google Scholar] [CrossRef]
- Stylinski, C.; Gamon, J.; Oechel, W. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 2002, 131, 366–374. [Google Scholar]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Yu, G.; Sun, X.; Liu, Y. Turbulence flux measurement above the overstory of a subtropical pinus plantation over the hilly region in southeastern China. Sci. China Ser. D Earth Sci. 2005, 48, 63–73. [Google Scholar]
- Wen, X.; Yu, G.-R.; Sun, X.-M.; Li, Q.-K.; Liu, Y.-F.; Zhang, L.-M.; Ren, C.-Y.; Fu, Y.-L.; Li, Z.-Q. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical pinus plantation of southeastern China. Agric. For. Meteorol. 2006, 137, 166–175. [Google Scholar] [CrossRef]
- Chen, B.; Ge, Q.; Fu, D.; Yu, G.; Sun, X.; Wang, S.; Wang, H. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeosciences 2010, 7, 2943–2958. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Timlin, D.J.; Reddy, V.R. Temperature influence on potato leaf and branch distribution and on canopy photosynthetic rate. Agron. J. 2006, 98, 1442–1452. [Google Scholar] [CrossRef]
- Nichol, C.J.; Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; Walthall, C.L.; Grace, J.; Hall, F.G. Remote sensing of photosynthetic-light-use efficiency of boreal forest. Agric. For. Meteorol. 2000, 101, 131–142. [Google Scholar] [CrossRef]
- Nichol, C.J.; Lloyd, J.; Shibistova, O.; Arneth, A.; Röser, C.; Knohl, A.; Matsubara, S.; Grace, J. Remote sensing of photosynthetic light use efficiency of a Siberian boreal forest. Tellus B 2002, 54, 677–687. [Google Scholar] [CrossRef]
- Coops, N.C.; Hilker, T.; Hall, F.G.; Nichol, C.J.; Drolet, G.G. Estimation of light-use efficiency of terrestrial ecosystems from space: A status report. BioScience 2010, 60, 788–797. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gamon, J.A. The need for a common basis for defining light-use efficiency: Implications for productivity estimation. Remote Sens. Environ. 2015, 156, 196–201. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.-L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, 626–640. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Modell. 1999, 124, 99–119. [Google Scholar] [CrossRef]
- Wu, X.; Ju, W.; Zhou, Y.; He, M.; Law, B.E.; Black, T.A.; Margolis, H.A.; Cescatti, A.; Gu, L.; Montagnani, L. Performance of linear and nonlinear two-leaf light use efficiency models at different temporal scales. Remote Sens. 2015, 7, 2238–2278. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Umanand, L. Estimation of global radiation using clearness index model for sizing photovoltaic system. Renew. Energy 2005, 30, 2221–2233. [Google Scholar] [CrossRef]
- Hilker, T.; Nesic, Z.; Coops, N.C.; Lessard, D. A new, automated, multiangular radiometer instrument for tower-based observations of canopy reflectance (AMSPEC II). Instrum. Sci. Technol. 2010, 38, 319–340. [Google Scholar] [CrossRef]
- Sun, X.-M.; Wen, X.-F.; Yu, G.-R. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China. Sci. China Ser. D Earth Sci. 2006, 49, 110–118. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Yu, G.-R.; Wen, X.-F. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D Earth Sci. 2006, 49, 99–109. [Google Scholar] [CrossRef]
- Wong, C.Y.; Gamon, J.A. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytol. 2015, 206, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Demmig-Adams, B.; Adams, W.W., III; Winter, K.; Meyer, A.; Schreiber, U.; Pereira, J.S.; Krüger, A.; Czygan, F.-C.; Lange, O.L. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in arbutus unedo growing in portugal. Planta 1989, 177, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Field, C.B.; Fredeen, A.L.; Thayer, S. Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynth. Res. 2001, 67, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Gitelson, A.; Coops, N.C.; Hall, F.G.; Black, T.A. Tracking plant physiological properties from multi-angular tower-based remote sensing. Oecologia 2011, 165, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Hall, F.G.; Tucker, C.J.; Coops, N.C.; Black, T.A.; Nichol, C.J.; Sellers, P.J.; Barr, A.; Hollinger, D.Y.; Munger, J.W. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II model implementation and validation. Remote Sens. Environ. 2012, 121, 287–300. [Google Scholar] [CrossRef]
- Sims, D.A.; Luo, H.; Hastings, S.; Oechel, W.; Rahman, A.; Gamon, J. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a southern california chaparral ecosystem. Remote Sens. Environ. 2006, 103, 289–303. [Google Scholar] [CrossRef]
- Cheng, Y.-B.; Middleton, E.M.; Zhang, Q.; Corp, L.A.; Dandois, J.; Kustas, W.P. The photochemical reflectance index from directional cornfield reflectances: Observations and simulations. Remote Sens. Environ. 2012, 124, 444–453. [Google Scholar] [CrossRef]
- Coops, N.C.; Hilker, T.; Wulder, M.A.; St-Onge, B.; Newnham, G.; Siggins, A.; Trofymow, J.A. Estimating canopy structure of douglas-fir forest stands from discrete-return LiDAR. Trees 2007, 21, 295–310. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Kuusk, J. A note on suitable viewing configuration for retrieval of forest understory reflectance from multi-angle remote sensing data. Remote Sens. Environ. 2015, 156, 242–246. [Google Scholar] [CrossRef]
- Urban, O.; Klem, K.; Ac, A.; Havrankova, K.; Holisova, P.; Navratil, M.; Zitova, M.; Kozlova, K.; Pokorny, R.; Sprtova, M.; et al. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol. 2012, 26, 46–55. [Google Scholar] [CrossRef]
- Cheng, S.J.; Bohrer, G.; Steiner, A.L.; Hollinger, D.Y.; Suyker, A.; Phillips, R.P.; Nadelhoffer, K.J. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric. For. Meteorol. 2015, 201, 98–110. [Google Scholar] [CrossRef]
- Wong, C.Y.; Gamon, J.A. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol. 2015, 206, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.F.; Gamon, J.A.; Fuentes, D.A.; Roberts, D.A.; Prentiss, D. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. J. Geophys. Res. Atmos. 2001, 106, 33579–33591. [Google Scholar] [CrossRef]
- Cheng, Y.-B.; Middleton, E.M.; Hilker, T.; Coops, N.C.; Black, T.A.; Krishnan, P. Dynamics of spectral bio-indicators and their correlations with light use efficiency using directional observations at a douglas-fir forest. Meas. Sci. Technol. 2009, 20, 095107. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens. Environ. 2011, 115, 2360–2375. [Google Scholar] [CrossRef]
- Nakaji, T.; Ide, R.; Oguma, H.; Saigusa, N.; Fujinuma, Y. Utility of spectral vegetation index for estimation of gross CO2 flux under varied sky conditions. Remote Sens. Environ. 2007, 109, 274–284. [Google Scholar] [CrossRef]
- Nakaji, T.; Ide, R.; Takagi, K.; Kosugi, Y.; Ohkubo, S.; Nasahara, K.N.; Saigusa, N.; Oguma, H. Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan. Agric. For. Meteorol. 2008, 148, 776–787. [Google Scholar] [CrossRef]
- Ide, R.; Nakaji, T.; Oguma, H. Assessment of canopy photosynthetic capacity and estimation of GPP by using spectral vegetation indices and the light-response function in a larch forest. Agric. For. Meteorol. 2010, 150, 389–398. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Hall, F.G.; Nichol, C.J.; Lyapustin, A.; Black, T.A.; Wulder, M.A.; Leuning, R.; Barr, A.; Hollinger, D.Y. Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space. J. Geophys. Res. 2011, 116, 218–223. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.J.; Nichol, C.; Disney, M.; Lewis, P.; Quaife, T.; Bowyer, P. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Glob. Change Biol. 2007, 13, 1484–1497. [Google Scholar]
- Goerner, A.; Reichstein, M.; Rambal, S. Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest. Remote Sens. Environ. 2009, 113, 1101–1111. [Google Scholar] [CrossRef]
- Moreno, A.; Maselli, F.; Gilabert, M.A.; Chiesi, M.; Martínez, B.; Seufert, G. Assessment of MODIS imagery to track light-use efficiency in a water-limited Mediterranean pine forest. Remote Sens. Environ. 2012, 123, 359–367. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Serrano, L.; Peñuelas, J. Assessing forest structure and function from spectral transmittance measurements: A case study in a Mediterranean holm oak forest. Tree Physiol. 2005, 25, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-H.; Lai, K.-M.; Liao, T.-S.; Hwang, M.-Y.; Chen, Y.-N. Relationships of photosynthetic capacity to psii efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan. Trees 2008, 23, 347–356. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Morales, F.; Flexas, J.; Gil-Pelegrin, E.; Moya, I. Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 2008, 156, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.; Suárez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Ju, W.; Chen, J.M.; Wang, H.; Yang, F.; Fan, W.; Huang, Q.; Zheng, T.; Feng, Y.; Zhou, Y.; et al. Ability of the Photochemical Reflectance Index to Track Light Use Efficiency for a Sub-Tropical Planted Coniferous Forest. Remote Sens. 2015, 7, 16938-16962. https://doi.org/10.3390/rs71215860
Zhang Q, Ju W, Chen JM, Wang H, Yang F, Fan W, Huang Q, Zheng T, Feng Y, Zhou Y, et al. Ability of the Photochemical Reflectance Index to Track Light Use Efficiency for a Sub-Tropical Planted Coniferous Forest. Remote Sensing. 2015; 7(12):16938-16962. https://doi.org/10.3390/rs71215860
Chicago/Turabian StyleZhang, Qian, Weimin Ju, Jing M. Chen, Huimin Wang, Fengting Yang, Weiliang Fan, Qing Huang, Ting Zheng, Yongkang Feng, Yanlian Zhou, and et al. 2015. "Ability of the Photochemical Reflectance Index to Track Light Use Efficiency for a Sub-Tropical Planted Coniferous Forest" Remote Sensing 7, no. 12: 16938-16962. https://doi.org/10.3390/rs71215860