Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula)
"> Figure 1
<p>Geological setting of the Alhama de Murcia fault (AMF). Explanation: CF, Carboneras fault; PF, Palomares fault; CAF, Carrascoy fault; BSF, Bajo Segura fault. Inset modified from [<a href="#B36-remotesensing-07-14827" class="html-bibr">36</a>]. Southern segments of AMF and 3D excavation site [<a href="#B25-remotesensing-07-14827" class="html-bibr">25</a>,<a href="#B32-remotesensing-07-14827" class="html-bibr">32</a>] are highlighted. The studied area is covered by the lidar topography-derived DEMs (hillshade basemap). AMF segmentation: (1) Huercal Overa-Lorca segment, (1.1) Huercal Overa-Rambla de los Pintados subsegment; (1.2) Rambla de los Pintados-Lorca subsegment; (2) Lorca-Totana; and (3) Totana-Alhama de Murcia. Segment 4 (Alhama de Murcia-Alcantarilla; not shown) is beyond the limit of the lidar to the northeast of Segment 3. Locations of offset examples are presented by the points REF025, REF036 and REF093.</p> "> Figure 2
<p>Schema used to define piercing lines (elements) and measure the offset of a channel crossing a sinistral fault (red line with arrows). Black lines are the rims of the channel and blue line is the channel thalweg. Piercing lines are defined for rims and thalweg separately and we consider near and longer length feature projections (solid and dashed). Letters indicate the channel feature taken into consideration and numbers refer to the number of measurements done with all possible combinations of piercing lines for each channel feature (rims and thalweg).</p> "> Figure 3
<p>Relationship between offset and uncertainty for the 138 offsets measured along the Alhama de Murcia fault. Horizontal axis is the mean offset value for each feature (PDF mode), vertical axis is the mean standard deviation.</p> "> Figure 4
<p>Illustration of the associated morphotectonics scoring for the AMF. The defined boxes are the intersection area between the width of the AMF fault zone (40 m) and the search radius circle around the central point of the feature of half of the offset measurement (u) plus 200 m. Each offset is indicated by the different colored boxes and circled point score. For example, the uppermost (<b>orange</b>) feature has 12 points because the deformation occurs within the fault zone and there are two morphotectonic features (fault parallel valley and scarp) spatially related with it.</p> "> Figure 5
<p>Offset shape rating. Three axes represent shape sub-parameters: fault zone width, difference of orientation of the two segments on each side of the fault and sinuosity. Blue lines are the channels, red lines are the fault zones (thickening with width), and green numbers are the shape scoring for every combination of the sub-parameters. Keeping two of the axes constant, shape rating decreases 0.15 points every step in the other axis, making it possible to have values between 1 and 0.1.</p> "> Figure 6
<p>Interpretation of offset REF025—An example where two types of qualities (subjective and objective) are the same: (<b>A</b>) old Digital Elevation Model (DEM) with a resolution of 4 m; (<b>B</b>) new lidar derived hillshade and 5 m contour map; (<b>C</b>) new lidar derived hillshade showing the location of the fault and the offset stream; (<b>D</b>) lidar derived hillshade showing some projected piercing lines (<b>black dashed lines</b>); and (<b>E</b>) back slip model of the offset. Offset in meters. See location on <a href="#remotesensing-07-14827-f001" class="html-fig">Figure 1</a>.</p> "> Figure 7
<p>Interpretation of offset REF036—In this example, objective quality is larger than subjective quality: (<b>A</b>) old Digital Elevation Model (DEM) with a resolution of 4 m; (<b>B</b>) new lidar derived hillshade and 5 m contour map; (<b>C</b>) 1956 ortophoto showing the location of the fault and the offset stream; (<b>D</b>) 1956 ortophoto showing some projected piercing lines (<b>pink dashed lines</b> represent the left bank of the channel, and purple lines the right bank looking downstream); and (<b>E</b>) back slip model of the offset.</p> "> Figure 8
<p>Interpretation of offset REF093—Subjective quality is larger than objective: (<b>A</b>) old Digital Elevation Model (DEM) with a resolution of 4 m; (<b>B</b>) new lidar derived hillshade and 5 m contour map; (<b>C</b>) 1956 ortophoto showing the location of the fault and the offset stream; (<b>D</b>) 1956 ortophoto showing some projected piercing lines (<b>pink dashed lines</b> represent the left bank of the channel, and purple lines the right bank looking downstream); and (<b>E</b>) back slip model of the offset.</p> "> Figure 9
<p>Plot of subjective <span class="html-italic">versus</span> objective quality. The equation of the correlation line was added as a reference.</p> "> Figure 10
<p>(<b>A</b>) Relation between quality and amount of offset. Objective quality scoring is red and subjective quality scoring is blue. Density contour lines represent the number of measurements in a grid of offset <span class="html-italic">versus</span> quality. In general, objective scores are higher that subjective ones. (<b>B</b>) Relation between quality and uncertainty. Objective quality scoring is red and subjective quality scorings is blue. Density contour lines representing the number of measurements in a grid of error <span class="html-italic">versus</span> quality. There is no correlation between qualities and the error magnitude.</p> "> Figure 11
<p>(<b>A</b>) Plot of individual offset objective parameters <span class="html-italic">versus</span> total objective quality (left axis). Each parameter’s contribution is shown in a different color. The right axis scales the corresponding subjective scoring (dots) for comparison. The shape score evidently scales the total objective score. (<b>B</b>) Plot of normalized objective parameters (left axis <span class="html-italic">versus</span> total objective quality). Every parameter is shown in a different color to make easier to identify the relative contribution of it to the whole objective score. Right axis is the difference between objective quality score and shape rating (objective quality minus shape scoring). The values of this difference range between −0.23 and 0.24. The relative contribution of shape parameter to the objective quality is constant.</p> "> Figure 12
<p>Offset geomorphic features along the Alhama de Murcia fault. Error bars represent uncertainties (mean standard deviation values, 1σ). Scoring for both subjective (<b>upper plot</b>) and objective (<b>lower plot</b>) quality are represented with different symbols. Objective or subjective quality legend: [0–0.25), very low quality; [0.25–0.5), low quality; [0.5–0.75), median quality; [0.75–1], high quality. No clusters on the amount of offset are evident in these plots. The AMF trace and its segmentation (see <a href="#remotesensing-07-14827-f001" class="html-fig">Figure 1</a> for numbers explanation) are shown at the bottom of the figure.</p> "> Figure 13
<p>(<b>A</b>) Histogram of the offsets and uncertainties. (<b>B</b>) Individual Probability Density Functions (PDF) of all features along the fault. (<b>C</b>) Cumulative Offset Distribution Probability (COPD) with no weighting and peak values highlighted. (<b>D</b>) COPD weighted previously with subjective (<b>green</b>) and objective (<b>blue</b>) quality score. Notice the difference in the vertical axis in the probability values (<b>B</b>–<b>D</b>). In general, the subjectively weighed COPD (<b>green line</b>) is lower than the objective COPD (<b>blue line</b>).</p> "> Figure 14
<p>Individual non-weighted COPDs for the considered fault segments and fault traces (see text). The fault trace that corresponds to every COPD is indicated by number. Alhama de Murcia fault segmentation according to [<a href="#B29-remotesensing-07-14827" class="html-bibr">29</a>] (see <a href="#remotesensing-07-14827-f001" class="html-fig">Figure 1</a> for location and explanation). In brackets, the number of measurements involved in every COPD.</p> "> Figure 15
<p>Correlation between the COPD (without weighting) of Segment 1 and trace 2.3 and climatic curves. Climatic curves are (1) the regional planktonic δ<sup>18</sup>O curve in the Alboran Sea [<a href="#B45-remotesensing-07-14827" class="html-bibr">45</a>]; (2) the regional mean sea surface temperature of the Alboran Sea [<a href="#B46-remotesensing-07-14827" class="html-bibr">46</a>] and the benthic δ<sup>18</sup>O global stack [<a href="#B44-remotesensing-07-14827" class="html-bibr">44</a>]. For the Segment 1 (right side), the slip-rate of 258 m in 200 ka [<a href="#B30-remotesensing-07-14827" class="html-bibr">30</a>] is used, whereas for trace 2.3, the approximate age obtained in the trenches (15 ka) for a 15 m buried offset channel [<a href="#B35-remotesensing-07-14827" class="html-bibr">35</a>] is applied. Dashed lines represent slip rate constraints for each segment. Dotted lines indicate maximum glacial stages.</p> ">
Abstract
:1. Introduction
2. Geological Setting
3. Data Sets Analyzed in this Study
4. Proposed Methodology for Assessment of Cumulative Offset Markers
4.1. Measurement and Uncertainty Relationship
4.2. Subjective Quality
4.3. Objective Quality
Parameter Name | Description |
---|---|
Lithological changes | Fault coincides with a rock type change which controls resistance to erosion |
Associated morphotectonics | Morphotectonic elements spatially related (Figure 4) |
Shape | Depending on 3 sub-parameters: fault width, orientation of the channel, and sinuosity (Figure 5) |
4.3.1. Lithological Changes
4.3.2. Associated Morphotectonics
4.3.3. Shape
4.4. Final Scoring of Objective Quality
5. Application of the Proposed Method to the Alhama de Murcia Fault
6. Methodological Discussion
6.1. Types of Quality
6.2. Objective Quality Parameters
6.3. Qualities and Parameters Correlation—Summary
Shape | Associated Morphotectonics | Lithologic Changes | Objective Quality | Subjective Quality | Uncertainty | Measurement | |
---|---|---|---|---|---|---|---|
Measurement | −0.19 | 0.01 | −0.10 | −0.17 | −0.11 | 0.63 | 1 |
0.03 | 0.93 | 0.23 | 0.05 | 0.22 | 0 | 0 | |
Uncertainty | −0.33 | −0.01 | −0.19 | −0.30 | −0.25 | 1 | |
0 | 0.90 | 0.03 | 0 | 0 | 0 | ||
Subjective Quality | 0.57 | 0.46 | 0.07 | 0.61 | 1 | ||
0 | 0 | 0.42 | 0 | 0 | |||
Objective Quality | 0.88 | 0.60 | 0.41 | 1 | |||
0 | 0 | 0 | 0 | ||||
Lithologic Changes | 0.10 | 0.02 | 1 | ||||
0.26 | 0.79 | 0 | |||||
Associated Morphotectonics | 0.31 | 1 | |||||
0 | 0 | ||||||
Shape | 1 | ||||||
0 |
7. Implications for Active Tectonics Investigations
8. Entrenchment Correlation with Climate Variation
9. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wallace, R.E. Notes on stream channels offset by the San andreas Fault southern coast ranges, california. In Geologic Problems of the San Andreas Fault System; Dickson, W.R., Grantz, A., Eds.; Stanford Univ. Publ.: Stanford, USA, 1968; pp. 6–21. [Google Scholar]
- Sieh, K. Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seismol. Soc. Am. 1978, 68, 1421–1448. [Google Scholar]
- Klinger, Y.; Etchebes, M.; Tapponnier, P.; Narteau, C. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci. 2011, 4, 389–392. [Google Scholar] [CrossRef]
- Salisbury, J.B.; Rockwell, T.K.; Middleton, T.J.; Hudnut, K.W. LiDAR and field observations of slip distribution for the most recent surface ruptures along the Central San Jacinto Fault. Bull. Seismol. Soc. Am. 2012, 102, 598–619. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Grant Ludwig, L.; Akciz, S.O. High-resolution topography-derived offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seismol. Soc. Am. 2012, 102. [Google Scholar] [CrossRef]
- Van der Woerd, J.; Tapponnier, P.; Ryerson, F.J.; Meriaux, A.; Meyer, B.; Gaudemer, Y.; Zhiqin, X. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys. J. Int. 2002, 148, 356–388. [Google Scholar] [CrossRef]
- Fu, B.; Awata, Y.; Du, J.; He, W. Late Quaternary systematic stream offsets caused by repeated large seismic events along the Kunlun fault, northern Tibet. Geomorphology 2005, 71, 278–292. [Google Scholar] [CrossRef]
- Ferry, M.; Meghraoui, M.; Karaki, N.A.; Al-Taj, M.; Amoush, H.; Al-Dhaisat, S.; Barjous, M. A 48-kyear-long slip rate history for the Jordan Valley segment of the Dead Sea Fault. Earth Planet. Sci. Lett. 2007, 260, 394–406. [Google Scholar] [CrossRef]
- Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Wernicke, B.P. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.F. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geol. Soc. Am. Bull. 2011, 123, 958–978. [Google Scholar] [CrossRef]
- Chevalier, M.L.; Tapponnier, P.; van der Woerd, J.; Ryerson, F.J.; Finkel, R.C.; Li, H. Spatially constant slip rate along the southern segment of the Karakorum fault since 200 ka. Tectonophysics 2012, 530–531, 152–179. [Google Scholar] [CrossRef]
- Walker, F.; Allen, M.B. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran. Tectonophysics 2012, 530–531, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.E.; Walker, R.T.; Abdrakhmatov, K.; Schwenninger, J.; Jackson, J.; Elliott, J.R.; Copley, A. The Dzhungarian fault: Late Quaternary tectonics and slip rate of a major right-lateral strike-slip fault in the northern Tien Shan region. J. Geophys. Res. Solid Earth 2013, 118, 5681–5698. [Google Scholar] [CrossRef] [Green Version]
- Moulin, A.; Benedetti, L.; Gosar, A.; Rupnik, P.J.; Rizza, M.; Bourlès, D.; Ritz, J.F. Determining the present-day kinematics of the Idrija fault (Slovenia) from airborne LiDAR topography. Tectonophysics 2014, 628, 188–205. [Google Scholar] [CrossRef]
- Cowgill, E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planet. Sci. Lett. 2007, 254, 239–255. [Google Scholar] [CrossRef]
- Scharer, K.M.; Salisbury, J.B.; Arrowsmith, J.R.; Rockwell, T.K. Southern San Andreas fault evaluation field activity: Approaches to measuring small geomorphic offsets-challenges and recommendations for active fault studies. Seismol. Res. Lett. 2014, 85, 68–76. [Google Scholar] [CrossRef]
- Salisbury, J.B.; Haddad, D.E.; Rockwell, T.K.; Arrowsmith, J.R.; Madugo, C.; Zielke, O.; Scharer, K. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data. Geosphere 2015. [Google Scholar] [CrossRef]
- McGill, S.F.; Sieh, K. Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes. J. Geophys. Res. 1991, 96, 21597–21621. [Google Scholar] [CrossRef]
- Zielke, O.; Klinger, Y.; Arrowsmith, J.R. Tectonophysics Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics 2015, 638, 43–62. [Google Scholar] [CrossRef]
- Bull, W. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Haeussler, P.J.; Schwartz, D.P.; Dawson, T.E.; Stenner, H.D.; Lienkaemper, J.J.; Sherrod, B.; Personius, S.F. Surface rupture and slip distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, S23–S52. [Google Scholar] [CrossRef]
- Yano, T.E.; Shao, G.; Liu, Q.; Ji, C.; Archuleta, R. Coseismic and potential early afterslip distribution of the 2009 Mw 6.3 L’Aquila, Italy Earthquake. Geophys. J. Int. 2014, 199, 23–40. [Google Scholar] [CrossRef]
- Bousquet, J.C. Quaternary strike-slip faults in south-eastern Spain. Tectonophysics 1979, 52, 277–286. [Google Scholar] [CrossRef]
- De Larouziére, F.D.; Bolze, J.; Bordet, P.; Hernández, J.; Montenat, C.; Ottd’Estevou, P. The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics 1988, 152, 41–52. [Google Scholar] [CrossRef]
- Masana, E.; Martínez-Díaz, J.J.; Hernández-enrile, J.L.; Santanach, P. The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Magrebian region. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Masana, E.; Pallàs, R.; Perea, H.; Ortuño, M.; Martínez-Díaz, J.J.; García-Meléndez, E.; Santanach, P. Large Holocene morphogenic earthquakes along the Albox fault, Betic Cordillera, Spain. J. Geodyn. 2005, 40, 119–133. [Google Scholar] [CrossRef]
- IGN (Instituto Geográfico Nacional). Catálogo de Terremotos. Madrid, Spain. Available online: http://www.ign.es/ign/layoutIn/sismoFormularioCatalogo.do (accessed on 12 January 2012).
- López-Comino, J.Á.; Mancilla, F.D.L.; Morales, J.; Stich, D. Rupture directivity of the 2011, Mw 5.2 Lorca earthquake (Spain). Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar]
- Silva, P.G.; Goy, J.L.; Zazo, C. Características estructurales y geométricas de la falla de desgarre de Lorca-Alhama. Geogaceta 1992, 12, 7–10. [Google Scholar]
- Silva, P.G. Evolución geodinámica de la Depresión del Guadalentín desde el Mioceno Superior hasta la actualidad: Neotectónica y Geomorfología. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1994. [Google Scholar]
- Martínez-Díaz, J.J. Neotectónica y Tectónica Activa del Sector Centro-Occidental de la Región de Murcia. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1998. [Google Scholar]
- Martínez-Díaz, J.J.; Masana, E.; Hernández-Enrile, J.L.; Santanach, P. Effects of repeated paleoearthquakes on the Alhama de Murcia Fault ( Betic Cordillera, Spain ) on the Quaternary evolution of an alluvial fan system. Ann. Geophys. 2003, 46, 775–791. [Google Scholar]
- Echeverría, A.; Khazaradze, G.; Asensio, E.; Gárate, J.; Martín Dávila, J.; Suriñach, E. Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics 2013, 608, 600–612. [Google Scholar] [CrossRef]
- Ortuño, M.; Masana, E.; García-Meléndez, E.; Martínez-Díaz, J.J.; Stepancikovà, P.; Cunha, P.P.; Murray, A. An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de. Geol. Soc. Am. Bull. 2012, 124, 1474–1494. [Google Scholar] [CrossRef]
- Ferrater, M.; Ortuño, M.; Masana, E.; Perea, H.; Baize, S.; Pallàs, R.; Rockwell, T.K. First lateral slip-rates along the left-lateral strike-slip Alhama de Murcia fault obtained with eD trenching (SE Iberian Peninsula). In Proceedings of the 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, Fucino, Italy, 19–24 April 2015.
- Martínez-Díaz, J.J.; Masana, E.; Ortuño, M. Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain. J. Iber. Geol. 2012, 38, 253–270. [Google Scholar] [CrossRef]
- Langridge, R.M.; Ries, W.F.; Farrier, T.; Barth, N.C.; Khajavi, N.; de Pascale, G.P. Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations. J. Struct. Geol. 2013. [Google Scholar] [CrossRef]
- Bond, C.E.; Gibbs, A.D.; Shipton, Z.K.; Jones, S. What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today 2007, 17, 4–10. [Google Scholar] [CrossRef]
- Bond, C.E.; Philo, C.; Shipton, Z. When there isn’t a right answer: Interpretation and reasoning, key skills for twenty-first century geoscience. Int. J. Sci. Educ. 2011, 33, 37–41. [Google Scholar] [CrossRef]
- Martínez-Díaz, J.J.; Alonso Henar, J.; Álvarez-Gómez, J.A. Más de 100 m de roca de falla muestreados. Available online: https://proyectointergeo.wordpress.com/2015/06/21/mas-de-100-m-de-roca-de-falla-muestreados/ (accessed on 20 July 2015).
- Ferrater, M.; Booth-Rea, G.; Pérez-Peña, J.V.; Azañón, J.M.; Masana, E. From extension to transpression: Quaternary reorganization of an extensional-related drainage network by the Alhama de Murcia strike-slip fault (eastern Betics). Tectonophysics 2015. [Google Scholar] [CrossRef]
- Candy, I.; Black, S. The timing of Quaternary calcrete development in semi-arid southeast Spain: Investigating the role of climate on calcrete genesis. Sediment. Geol. 2009, 218, 6–15. [Google Scholar] [CrossRef]
- Schulte, L.; Julià, R. A Quaternary soil chronosequence of Southeastern Spain. Z. Geomorph. NF 2001, 45, 145–158. [Google Scholar]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20. [Google Scholar] [CrossRef]
- Von Grafenstein, R.; Zahn, R.; Tiedeman, R.; Murat, A. Planktonic δ18O record at sites 976 and 977, Alboran Sea: Stratigraphy, forcing, and paleoceanographic implications. Proc. Ocean Drill. Program Sci. Results 1999, 161, 469–479. [Google Scholar]
- Martrat, B.; Grimalt, J.O.; Lopez-Martinez, C.; Cacho, I.; Sierro, F.J.; Flores, J.A.; Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 2004, 306, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrater, M.; Arrowsmith, R.; Masana, E. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula). Remote Sens. 2015, 7, 14827-14852. https://doi.org/10.3390/rs71114827
Ferrater M, Arrowsmith R, Masana E. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula). Remote Sensing. 2015; 7(11):14827-14852. https://doi.org/10.3390/rs71114827
Chicago/Turabian StyleFerrater, Marta, Ramon Arrowsmith, and Eulàlia Masana. 2015. "Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula)" Remote Sensing 7, no. 11: 14827-14852. https://doi.org/10.3390/rs71114827