Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland)
"> Figure 1
<p>Geographical setting of the study area with TerraSAR-X data frame and the boundaries of coal mining areas in Upper Silesia Coal Basin [<a href="#B30-remotesensing-07-05300" class="html-bibr">30</a>]. On the right Bobrek-Centrum mine, which caused subsidence over Karb district (red rectangle) located in Bytom mining area.</p> "> Figure 2
<p>Location of the demolished buildings in the Karb settlement.</p> "> Figure 3
<p>TerraSAR-X (TSX) X-band differential interferogram with boundaries of coal mining areas in Upper Silesia Coal Basin. Start and end dates of the interferogram are 25 November 2011–06 December 2011.</p> "> Figure 4
<p>SqueeSAR<sup>TM</sup> Line of Sight (LOS) velocity in mm per year results displayed in a color scale, where green values are stable, blue uplift, and yellow, orange and red are subsidence. (<b>a</b>) LOS velocity of point scatterers (PS); (<b>b</b>) LOS velocity of distributed scatterers (DS); (<b>c</b>) standard deviation map of the LOS velocity of PS; (<b>d</b>) standard deviation map of the LOS velocity of DS; (<b>e</b>) dataset before ramp removal; and (<b>f</b>) dataset after ramp removal.</p> "> Figure 5
<p>Permanent Scatterers Interferometry (PSI) dataset histograms. (<b>a</b>) Histogram of point scatterers (PS) Line of Sight (LOS) velocity; (<b>b</b>) histogram of distributed scatterers (DS) LOS velocity; (<b>c</b>) histogram of PS velocity standard deviation; and (<b>d</b>) histogram of DS velocity standard deviation.</p> "> Figure 6
<p>Point scatterers (circles) and distributed scatterers (squares) location over selected areas. Both measurement point (MP) types are presented in the same color scale by their Line of Sight velocity values. (<b>a</b>) Crossroad of national road no. 94 and Nowaka-Jeziorańskiego street in Bytom; (<b>b</b>) Popiełuszki street in Bytom; (<b>c</b>) Agricultural area in Będzin; (<b>d</b>) Agricultural area in Stara Kuźnia. See location of these areas in <a href="#remotesensing-07-05300-f004" class="html-fig">Figure 4</a>.</p> "> Figure 7
<p>Interferograms (5 out of 28) from Bytom study area: (<b>a</b>) 05 July 2011–16 July 2011, (<b>b</b>) 16 July 2011–27 July 2011, (<b>c</b>) 23 October 2011–03 November 2011, (<b>d</b>) 17 December 2011–28 December 2011, and (<b>e</b>) 14 March 2012–25 March 2012. (<b>f</b>) Summed values of maximum displacement measured for each interferogram generated in the period 05 July 2011–21 June 2012. The values of maximum displacement are reported in the labels over the boundaries of the troughs. Resulting three areas in picture (f) correspond to the troughs labeled 1, 2 and 3 on <a href="#remotesensing-07-05300-f007" class="html-fig">Figure 7</a>.</p> "> Figure 8
<p>Resulting maximum cumulated total displacement measured in the subsidence troughs detected from the interferograms analysis in the Upper Silesia Coal Basin area during the period 05 July 2011–21 June 2012.</p> "> Figure 9
<p>Cumulated displacements in the Upper Silesia Coal Basin, Katowice and Ruda Ślaska area. (<b>a</b>) Permanent Scatterers Interferometry (PSI) cumulated displacement; (<b>b</b>) cumulated displacement measured for the subsidence troughs derived from conventional Differential Synthetic Aperture Radar Interferometry (DInSAR); and (<b>c</b>) PSI cumulated displacement values superimposed on the subsidence troughs derived from conventional DInSAR. Common color scale is used both for PSI and the troughs cumulated displacement value, with this remark that for the trough (b,c), the value refer only to the maximum detected subsidence within the whole active area.</p> "> Figure 10
<p>(<b>a</b>) Cumulated displacement measured on Permanent Scatterers Interferometry (PSI) points in the area of the reference point (<a href="#remotesensing-07-05300-f004" class="html-fig">Figure 4</a>); (<b>b</b>) cumulated displacement measured for the subsidence trough no. 19 “Klodnica” (<a href="#remotesensing-07-05300-f008" class="html-fig">Figure 8</a>, <a href="#remotesensing-07-05300-t004" class="html-table">Table 4</a>) superimposed on the PSI cumulated displacement; (<b>c</b>) time series of PSI around 100 m of the reference point. In blue squares the averaged value; and (<b>d</b>) time series of PSI around 100 m of the subsidence trough from (b). In red squares the averaged value.</p> "> Figure 11
<p>(<b>a</b>) Permanent Scatterers Interferometry (PSI) cumulated displacement map with the boundary of PSI points moving faster than −5 mm/year (red line). Common color scale is used both for PSI and the troughs cumulated displacement value. Note that in the case of the troughs the value refers to the maximum detected subsidence within the whole period of observation. (<b>b</b>) Areas of probable influence of the mining activity, named: Bytom VI, Bytom III and Bytom-Centrum (green, orange and blue lines respectively) according to [<a href="#B50-remotesensing-07-05300" class="html-bibr">50</a>].</p> "> Figure 12
<p>(<b>a</b>–<b>f</b>) Six subsequent X-band differential interferograms over Karb settlement; (<b>g</b>) seventh X-band interferogram and the location of the coal extraction work plan executed under Karb settlement from December 2010 to August 2011; and (<b>h</b>) location of the demolished buildings (<a href="#remotesensing-07-05300-f002" class="html-fig">Figure 2</a>). The values of detected displacement are reported in the labels over the interferogram fringes.</p> "> Figure 13
<p>Integrated subsidence map over Karb settlement covering period 05 July 2011–29 August 2011.</p> ">
Abstract
:1. Introduction
2. Bytom City Study Area
Category of the Influence | Tilt | Radius of Curvature | Horizontal Deformation | Potential Damage |
---|---|---|---|---|
T, mm/m | R, km | ε, mm/m | ||
0 | T ≤ 0.5 | 40 ≤ |R| | |ε| ≤ 0.3 | protection no required |
I | 0.5 < T ≤ 2.5 | 20 ≤ |R| < 40 | 0.3 < |ε| ≤ 1.5 | may arise small, harmless damage |
II | 2.5 < T ≤ 5 | 12 ≤ |R| < 20 | 1.5 < |ε| ≤ 3 | may arise damage easy to remove |
III | 5 < T ≤ 10 | 6 ≤ |R| < 12 | 3 < |ε| ≤ 6 | protection required |
IV | 10 < T ≤ 15 | 4 ≤ |R| < 6 | 6 < |ε| ≤ 9 | serious protection required |
V | 15 < T | |R| < 4 | 9 < |ε| | high probability of occurrence of discontinuous displacement (sinkholes) |
3. Methods
3.1. Conventional DInSAR Processing
3.2. Advanced DInSAR Processing
4. Results
4.1 Conventional DInSAR Results
Date 1 | Date 2 | Perpendicular Baseline [m] | Date 1 | Date 2 | Perpendicular Baseline [m] |
---|---|---|---|---|---|
05 July 2011 | 16 July 2011 | 13 | 06 December 2011 | 17 December 2011 | 133 |
16 July 2011 | 27 July 2011 | 85 | 17 December 2011 | 28 December 2011 | 57 |
27 July 2011 | 07 August 2011 | 17 | 10 February 2012 | 21 February 2012 | 41 |
07 August 2011 | 18 August 2011 | 50 | 21 February 2012 | 03 March 2012 | 138 |
18 August 2011 | 29 August 2011 | 58 | 03 March 2012 | 14 March 2012 | 51 |
29 August 2011 | 09 September 2011 | 44 | 14 March 2012 | 25 March 2012 | 53 |
09 September 2011 | 20 September 2011 | 285 | 25 March 2012 | 05 March 2012 | 81 |
20 September 2011 | 01 October 2011 | 252 | 05 April 2012 | 16 April 2012 | 2 |
01 October 2011 | 12 October 2011 | 116 | 16 April 2012 | 27 April 2012 | 218 |
12 October 2011 | 23 October 2011 | 113 | 27 April 2012 | 08 May 2012 | 259 |
23 October 2011 | 03 November 2011 | 110 | 08 May 2012 | 19 May 2012 | 59 |
03 November 2011 | 14 November 2011 | 236 | 19 May2012 | 30 May 2012 | 27 |
14 November 2011 | 25 November 2011 | 95 | 30 May2012 | 10 June 2012 | 59 |
25 November 2011 | 06 December 2011 | 30 | 10 June 2012 | 21 June 2012 | 200 |
4.2. SqueeSARTM Results
Band | X | |
---|---|---|
Wavelength | 3 cm | |
Incidence angle | 37° | |
Orbital track | 108 | |
Acquisition mode | Descending | |
Resolution of the image | 3 m × 3 m | |
Min. temporal span between two acquisitions | 11 days | |
Max. theoretical measurement point (MP) velocitymeasurable between neighboring pixels | 250 mm/year | |
Temporal span | 05 July 2011–21 June 2012 | |
Master image | 01 October 2011 | |
No. SAR images | 30 | |
No. of interferograms | 28 | |
Max. spatial baseline | 285 m | |
Reference point coordinates | 50.307 N, 18.975 E | |
Total study area | No. of MPs | 1,715,758 |
µ ± σ | −3 ± 11 mm/year | |
VELMIN/VELMAX | −334/+68 mm/year | |
Bytom study area | No. of MPs | 36,342 |
µ ± σ | −4 ± 12 mm/year | |
VELMIN/VELMAX | −147/+ 22 mm/year |
5. Discussion
5.1. Analysis of DInSAR Results
Conventional DInSAR: Interferograms | Advanced DInSAR: SqueeSARTM Results on a 1 km Buffered Area around Every Subsidence Trough | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | District | Date of First Fringes | Date of Last Fringes | Period with Fringes [Days] | Total Displacement [mm] | LOS Velocity [mm/year] | MP density per km2 | Mean Total Displacement [mm] | Max. Total Displacement [mm] | Mean LOS Velocity [mm/year] |
1 | Miechowice | 25 November 2011 | 10 June 2012 | 196 | −536 | −997 | 1501 | −4 | −131 | −4 |
2 | Brantka | 12 October 2011 | 10 June 2012 | 239 | −550 | −842 | 726 | −23 | −64 | −23 |
3 | Karb | 05 July 2011 | 29 August 2011 | 54 | −245 | −1659 | 1167 | −12 | −66 | −12 |
4 | Brzeziny | 05 July 2011 | 28 December 2011 | 173 | −629 | −1326 | 977 | −13 | −71 | −11 |
5 | Dolki | 05 July 2011 | 21 June 2012 | 346 | −664 | −697 | 1268 | −4 | −82 | −2 |
6 | Gieraltowice | 10 February 2012 | 10 June 2012 | 121 | −271 | −819 | 740 | −57 | −312 | −55 |
7 | Paniowki | 05 July 2011 | 10 June 2012 | 336 | −330 | −360 | 533 | −17 | −183 | −18 |
8 | Chudow | 25 November 2011 | 21 June 2012 | 206 | −92 | −163 | 487 | −36 | −197 | −42 |
9 | Borowa | 16 April 2012 | 27 April 2012 | 11 | −16 | −545 | 743 | −28 | −220 | −31 |
10 | Paniowy | 09 September 2011 | 19 May 2012 | 250 | −277 | −405 | 421 | −38 | −150 | −44 |
11 | Ornantowice | 27 July 2011 | 28 December 2011 | 151 | −173 | −419 | 392 | −21 | −88 | −23 |
12 | Pelcowka | 12 October 2011 | 28 December 2011 | 76 | −60 | −287 | 609 | −4 | −40 | −4 |
13 | Bielszowice | 16 July 2011 | 10 June 2012 | 325 | −345 | −386 | 1734 | −5 | −200 | −5 |
14 | Park_strzelnica | 14 March 2012 | 05 April 2012 | 22 | −29 | −489 | 1479 | −12 | −60 | −12 |
15 | Wirek | 09 September 2011 | 21 June 2012 | 282 | −317 | −409 | 2495 | −15 | −133 | −16 |
16 | Ruda_slaska | 16 July 2011 | 28 December 2011 | 162 | −83 | −186 | 2242 | −8 | −75 | −10 |
17 | Wirek2 | 08 May 2012 | 30 May 2012 | 22 | −33 | −542 | 1485 | −29 | −65 | −30 |
18 | Kochlowice | 05 July 2011 | 30 May 2012 | 325 | −219 | −245 | 1717 | −13 | −281 | −14 |
19 | Klodnica | 17 December 2011 | 16 April 2012 | 119 | −60 | −184 | 779 | −10 | −51 | −13 |
20 | Stare_panewniki | 14 November 2011 | 14 March 2012 | 120 | −66 | −202 | 121 | −23 | −34 | −27 |
21 | Radoszowy | 03 March 2012 | 16 April 2012 | 43 | −49 | −419 | 969 | −1 | −13 | −6 |
22 | Ligota | 23 October 2011 | 03 November 2011 | 11 | −16 | −523 | 2894 | −36 | −195 | −35 |
23 | Murcki | 07 August 2011 | 05 April 2012 | 239 | −33 | −51 | 95 | −11 | −25 | −13 |
24 | Staw_barbara | 25 November 2011 | 28 December 2011 | 33 | −48 | −529 | 348 | −9 | −59 | −10 |
25 | Giszowiec | 25 March 2012 | 05 April 2012 | 11 | −16 | −544 | 800 | −10 | −76 | −11 |
26 | Stara_wesola | 25 March 2012 | 05 April 2012 | 11 | −17 | −571 | 428 | −12 | −58 | −11 |
27 | Myslowice | 23 October 2011 | 10 June 2012 | 228 | −94 | −150 | 180 | −13 | −55 | −12 |
28 | Wesola | 29 August 2011 | 05 April 2012 | 217 | −89 | −149 | 625 | −28 | −66 | −32 |
29 | Morgi | 05 July 2011 | 12 October 2011 | 97 | −103 | −388 | 796 | −22 | −197 | −23 |
30 | Ledziny | 05 July 2011 | 28 December 2011 | 173 | −256 | −541 | 920 | −13 | −113 | −12 |
31 | Ledziny_halda | 16 April 2012 | 27 April 2012 | 11 | −16 | −529 | 514 | 0 | −100 | 0 |
5.2. Analysis of Advanced DInSAR Results
5.3. Analysis and Validation of the Results in the Bobrek-Centrum Mining Area
No. | SqueeSARTM (mm/year) | Geodesy (mm/year) | Error | No. | DInSAR (mm) | Geodesy (mm) | Error |
---|---|---|---|---|---|---|---|
1 | −66 | −72 | 6 | 4 | −105 | −64 | 41 |
2 | −13 | −8 | 5 | 5 | −33 | −56 | 23 |
3 | −67 | −56 | 11 | 6 | −65 | −64 | 1 |
8 | −69 | −64 | 5 | 7 | −100 | −64 | 36 |
Average | 53.75 | 50 | 7 | 75.75 | 62 | 25 |
6. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Bell, F.G.; Stacey, T.R.; Genske, D.D. Mining subsidence and its effect on the environment: Some differing examples. Environ. Geo. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Crowell, D.L. The hazards of mine subsidence. In Ohio Geology; Ohio Department of Natural Resources: Columbus, OH, USA, 1995; pp. 1–5. [Google Scholar]
- Ren, G.; Li, J. A study of angle of draw in mining subsidence using numerical modelling techniques. Electron. J. Geotech. Eng. 2008, 13, 1–14. [Google Scholar]
- Borecki, M. Ochrona powierzchni przed szkodami górniczymi; Śląsk: Katowice, Poland, 1980; p. 967. [Google Scholar]
- Kwiatek, J. Ochrona Obiektów Budowlanych na Terenach Górniczych; GIG: Katowice, Poland, 1997; p. 726. [Google Scholar]
- Paleczek, W. Metoda obliczania wartości promienia zasięgu wpływów głównych z wykorzystaniem danych geomechanicznych skal. Zeszyty Naukowe Politechniki Czestokowskich. Budownictwo 2009, 15, 19–36. [Google Scholar]
- Konopko, W. Wydobycie węgla i destrukcja górotworu w Górnośląskim Zagłębiu Węglowym. Przegląd Górniczy 2010, 66, 1–10. [Google Scholar]
- Dulias, R. Impact of mining subsidence on the relief of the Rybnik Plateau, Poland. Z. Geomorphologie, Suppl. Issues 2011, 55, 25–36. [Google Scholar] [CrossRef]
- Helios Rybicka, E. Impact of mining and metallurgical industries on the environment in Poland. Appl. Geochem. 1996, 1, 3–9. [Google Scholar]
- Buła, Z.; Kotas, A. Atlas Geologiczny Górnośląskiego Zagłębia Węglowego. Mapy Strukturalne. Cz. 3; PIG: Warsaw, Poland, 1994. [Google Scholar]
- Buła, Z.; Jachowicz, M.; Zaba, J. Principal characteristics of the Upper Silesian Block and Malopolska Block border zone (Southern Poland). Geol. Mag. 1997, 134, 669–677. [Google Scholar] [CrossRef]
- Buła, Z.; Habryn, R.; Krieger, W.; Kurek, S.; Markowiak, M.; Woźniak, P. Geological Atlas of the Palaeozoic without the Permian in the Border Zone of the Upper Silesian and Małopolska Blocks. Explanatory Text; PIG: Warsaw, Poland, 2002. [Google Scholar]
- Szufilcki, M.; Malon, A.; Tymiński, M. Bilans Zasobów Złóż Kopalin w POLSCE wg Stanu na 31 XII 2012 r; PGI-NRI: Warsaw, Poland, 2013; p. 49. (In Polish) [Google Scholar]
- Klabis, L.; Kowalski, A. Eksploatacja górnicza w filarze ochronnym dla śródmieścia Bytomia, historia i teraźniejszość. In Proceedings of the V konferencja naukowo szkoleniowa GIG, Bezpieczeństwo i ochrona obiektów budowlanych na terenach górniczych, Karpacz, Poland, 15–17 October 2014.
- Białecka, B. Tereny zdegradowane działalnością górniczą—Geneza. In Tereny pogórnicze—Szanse, Zagrożenia. Analiza Przypadku; Białecka, B., Biały, W., Eds.; Panova SA: Gliwice, Poland, 2014; p. 14. [Google Scholar]
- Carnec, C.; Delacourt, C. Three years of mining subsidence monitored by SAR interferometry, Near Gardanne, France. J. Appl. Geophys. 2000, 43, 43–54. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Monitoring mining induced surface deformation. IEEE Proc. Geosci. Remote Sens. Symp. 2004, 3, 1933–1935. [Google Scholar]
- Herrera, G.; Tomás, R.; Vicente, F.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. Mapping ground movements in open pit mining areas using differential SAR interferometry. Int. J. Rock Mech. Min. Sci. 2010, 47, 1114–1125. [Google Scholar] [CrossRef]
- Benecke, N.; Bateson, L.; Browitt, C.; Declercq, P.; Graniczny, M.; Marsh, S.; Zimmermann, K. Perspectives concerning satellite EO and geohazard risk management: The way forward—Community paper concerning inactive mines hazards. In Proceedings of the The InternatIonal Forum on Satellite EO and Geohazardas, Forum on Satellite EO and Geohazards, Santorini, Greece, 21–23 May 2012.
- Engelbrecht, J.; Inggs, M. Differential interferometry techniques on L-band data employed for the monitoring of surface subsidence due to mining. S. Afr. J. Geomatics. 2013, 2, 82–93. [Google Scholar]
- Perski, Z. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland. Int. Arch. Photogramm. Remote Sens. 1998, 32, 555–558. [Google Scholar]
- Perski, Z.; Jura, D. ERS SAR interferometry for land subsidence detection in coal mining areas. Earth Obs. Quart. 1999, 63, 25–29. [Google Scholar]
- Popiolek, E.; Hejmanowski, R.; Krawczyk, A.; Perski, Z. Application of Satellite Radar Interferometry to the examination of the areas of mining exploitation. Surf. Mining Braunkhole Other Miner. 2002, 54, 74–82. [Google Scholar]
- Graniczny, M.; Kowalski, Z.; Lesniak, A.; Czarnogorska, M.; Piatkowska, A. Analysis of the PSI data from the Upper Silesia—SW Poland. In Proceedings of the International Geohazard Week, ESA-ESRIN, Frascati, Rome, Italy, 5–6 November 2007.
- Graniczny, M. Sosnowiec, Poland. In The Terrafirma Atlas—The Terrain-Motion Information Service for Europe; Capes, R., Marsh, S., Eds.; ESA: Frascati, Italy, 2009; p. 34. [Google Scholar]
- Leśniak, A.; Porzycka, S. Impact of tectonics on ground deformations caused by mining activity in the north-eastern part of the Upper Silesian Coal Basin. Gospodarka Surowcami Mineralnymi 2009, 25, 227–238. [Google Scholar]
- Graniczny, M.; Colombo, D.; Kowalski, Z.; Przyłucka, M.; Zdanowski, A. New results on ground deformation in the Upper Silesian Coal Basin (Southern Poland) obtained during the DORIS Project (EU-FP 7). Pure Appl. Geophys. 2014. [Google Scholar] [CrossRef]
- Zdunska Wola, nasze miesto. Available online: http://zdunskawola.naszemiasto.pl/ (accessed on 27 June 2012). (In Polish)
- Bobrek-Centrum. Oddział KWK “Bobrek—Centrum”. Available online: http://www.kwsa.pl/ (accessed on 14 March 2014).
- GIG. Obszary Górnicze Kopalń Podziemnych oraz Płytkie Eksploatacje rud i Węgla Kamiennego w Górnośląskim Zagłębiu Węglowym; Mapy Ścienne, Beata Piętka: Katowice, Poland, 2012. [Google Scholar]
- Skrzypczyk-Kogut, B. Raport o Stanie Miasta Bytom 2011; Urząd Miasta Bytom: Bytom, Poland, 2012; pp. 120–123. [Google Scholar]
- Domagała, I. Raport o Stanie Miasta Bytom 2012; Urząd Miasta Bytom: Bytom, Poland, 2013; pp. 124–126. [Google Scholar]
- Dobak, P.; Dragowski, A.; Frankowski, Z.; Frolik, A.; Kaczynski, R.; Kotyrba, A.; Pininska, J.; Rybicki, S.; Wozniak, H. Zasady Dokumentowania Warunków Geologiczno-Inżynierskich dla Celów Likwidacji Kopalń; Polish Ministry of Enviroment: Warsaw, Poland, 2009; pp. 12–14.
- Popiołek, E. Warunki prowadzenia eksploatacji górniczej z uwagi na ochronę powierzchni. Przegląd Górniczy 2011, 67, 148–152. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; John Wiley and Sons: New York, NY, USA, 1991; p. 647. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its applications to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Ferretti, A.; Novali, F.; Bürgmann, R.; Hilley, G.; Prati, C. InSAR Permanent Scatterer analysis reveals ups and downs in San Francisco Bay area. Eos 2004, 85, 317–324. [Google Scholar] [CrossRef]
- Stramondo, S.; Chini, M.; Bignami, C.; Salvi, S.; Atzori, S. X-, C-, and L-band DInSAR investigation of the April 6, 2009, Abruzzi earthquake. IEEE Geoscie. Remote Sens. Lett. 2011, 8, 49–53. [Google Scholar] [CrossRef]
- Chaussard, E.; Falk, A. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Hay-Man Mg, A.; Chang, H.C.; Ge, L.; Rizos, C.; Omura, M. Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planets Space 2009, 61, 733. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using Permanent Scatteres in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferreti, A.; Prati, C.; Rocca, F. Permanent Scatterers InSAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.C.; Ringrose, P.S.; Mathieson, A.S.; Wright, I.W. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the Permanent Scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 4, 1685–1701. [Google Scholar] [CrossRef]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 249–257. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N.; Smets, B. Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; de Luca, C.; Guzzetti, F. Brief communication: Rapid mapping of event landslides: The 3 December 2013 Montescaglioso landslide (Italy). Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2, 1465–1479. [Google Scholar] [CrossRef]
- Nitti, D.O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M.T.; Guerriero, L. TerraSAR-X InSAR multipass analysis on Venice (Italy). Proc. SPIE 2009, 7477. [Google Scholar] [CrossRef]
- PGI-NRI. Midas service. Avaiable online: http://geoportal.pgi.gov.pl/portal/page/portal/MIDASGIS/start (accessed on 23 June 2014).
- Devleeschouwer, X.; Declercq, P.Y.; Flamion, B.; Brixko, J.; Timmermans, A.; Vanneste, J. Uplift revealed by radar interferometry around Liège (Belgium): A relation with rising mining groundwater. In Proceedings of the Post-Mining Symposium, Nancy, France, 6–8 February 2008; pp. 1–13.
- Strzelczyk, J.; Porzycka, S.; Lesniak, A. Analysis of ground deformations based on parallel geostatistical computations of PSInSAR data. In Proceedings of 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009. [CrossRef]
- Sanabria, M.P.; Guardiola-Albert, C.; Tomás, R.; Herrera, G.; Prieto, A.; Sánchez, H.; Tessitore, S. Subsidence activity maps derived from DInSAR data: Orihuela case study. Nat. Hazards Earth Syst. Sci. 2014, 14, 1341–1360. [Google Scholar] [CrossRef]
- Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): Tectonic implications. Tectonophysics 2013, 594, 38–59. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Raucoules, D.; Bourgine, B.; de Michele, M.; le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and Intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; Lopez–Sanchez, J.M.; Delgado, J.; Vicente, F.; Mulas, J.; Cooksley, G.; Sánchez, M.; Duro, J.; Arnaud, A.; et al. Validation and comparison of advanced differential interferometry techniques: Murcia metropolitan area case study. ISPRS J. Photogramm. Remote Sens. 2009, 64, 501–512. [Google Scholar] [CrossRef]
- Bitelli, G.; Bonsignore, F.; del Conte, S.; Novali, F.; Pellegrino, I.; Vittuari, L. Integrated Use of Advanced InSAR and GPS Data for Subsidence Monitoring. Eng. Geol. Soc. Terr. 2015, 5, 147–150. [Google Scholar]
- Manconi, A.; Giordan, D.; Allasia, P.; Baldo, M.; Lollino, G. Surface displacements following the Mw 6.3 L’Aquila earthquake: One year of continuous monitoring via Robotized Total Station. Ital. J. Geosci. 2012, 131, f3. [Google Scholar]
- Bock, Y.; Wdowinski, S.; Ferretti, A.; Novali, F.; Fumagalli, A. Recent subsidence of the Venice Lagoon from continuous GPS and interferometric Synthetic Aperture Radar. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300-5328. https://doi.org/10.3390/rs70505300
Przyłucka M, Herrera G, Graniczny M, Colombo D, Béjar-Pizarro M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sensing. 2015; 7(5):5300-5328. https://doi.org/10.3390/rs70505300
Chicago/Turabian StylePrzyłucka, Maria, Gerardo Herrera, Marek Graniczny, Davide Colombo, and Marta Béjar-Pizarro. 2015. "Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland)" Remote Sensing 7, no. 5: 5300-5328. https://doi.org/10.3390/rs70505300