Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data
<p>Study area in Shijiazhuang, China. (<b>a</b>) WordView-2 RGB color composite of the study area. Line 1 (Left) and 2 (Right) are two north–south direction profile transects. (<b>b</b>) Location of the study area and Landsat TM imagery.</p> "> Figure 2
<p>Overall process flow.</p> "> Figure 3
<p>LCTs patterns and percent impervious surface area distribution derived from Landsat TM image in the study area on 5 September 2006 and 15 August 2010, (<b>a</b>) LCTs patterns on 5 September 2006; (<b>b</b>) LCT patterns on 15 August 2010; (<b>c</b>) percent impervious surface area on 5 September 2006; (<b>d</b>) percent impervious surface area on 15 August 2010.</p> "> Figure 4
<p>LST distribution in the study area derived from Landsat TM image on (<b>a</b>) 5 September 2006; (<b>b</b>) 23 August 2007; (<b>c</b>) 12 August 2009; and (<b>d</b>) 15 August 2010.</p> "> Figure 5
<p>(<b>a</b>) Accuracy assessment of estimated ISA% on August 15, 2010; (<b>b</b>) Scatterplot of LST <span class="html-italic">vs.</span> ISA% on August 15, 2010; (<b>c</b>) Scatterplot of Mean LST <span class="html-italic">vs.</span> ISA% on 15 August 2010.</p> "> Figure 6
<p>Spectral indices in the study area derived from Landsat TM image on 15 August 2010, (<b>a</b>) Normalized Difference Vegetation Index (NDVI); (<b>b</b>) Universal Pattern Decomposition (VIUPD); (<b>c</b>) Normalized Difference Built-up Index (NDBI) and (<b>d</b>) Biophysical Composition Index (BCI).</p> "> Figure 7
<p>Scatterplot of LST <span class="html-italic">versus</span> the remote sensing indexes on 15 August 2010 (<b>a</b>) Scatterplot of LST <span class="html-italic">vs.</span> NDVI; (<b>b</b>) Scatterplot of mean LST <span class="html-italic">vs.</span> NDVI; (<b>c</b>) Scatterplot of LST <span class="html-italic">vs.</span> VIUPD; and (<b>d</b>) Scatterplot of mean LST <span class="html-italic">vs.</span> VIUPD.</p> "> Figure 8
<p>Scatterplot of LST <span class="html-italic">vs.</span> remote sensing indexes on 15 August 2010 (a) Scatterplot of LST <span class="html-italic">vs.</span> NDBI; (<b>b</b>) Scatterplot of mean LST <span class="html-italic">vs.</span> NDBI; (<b>c</b>) Scatterplot of LST <span class="html-italic">vs.</span> BCI; and (<b>d</b>) Scatterplot of mean LST <span class="html-italic">vs.</span> BCI.</p> "> Figure 9
<p>LCTs map derived from WV2 image and SASI image using SVM and watershed segmentation method.</p> "> Figure 10
<p>LST derived from TASI imagery on (<b>a</b>) the morning of 7 August 2010; (<b>b</b>) the noon of 7 August 2010; (<b>c</b>) the noon of 15 August 2010; (<b>d</b>) the evening of 25 July 2010; and (<b>e</b>) the evening of 27 July 2010. (Note that the white regions are those could not pass the data quality control.)</p> "> Figure 11
<p>Histogram of LST over all land covers on (<b>a</b>) the morning of 7 August 2010; (<b>b</b>) the noon of 7 August 2010; (<b>c</b>) the noon of 15 August 2010; (<b>d</b>) the evening of 25 July 2010; (<b>e</b>) the evening of 27 July 2010.</p> "> Figure 12
<p>North–south land surface temperature profiles derived from TASI LST images, (<b>a</b>) Line 1; (<b>b</b>) Line 2 (locations marked in <a href="#remotesensing-07-04804-f001" class="html-fig">Figure 1</a>).</p> "> Figure 13
<p>Comparison of the LST from TASI and Landsat TM on 15 August 2010 (<b>a</b>) Scatter plot of the LST; (<b>b</b>) the LST profile on two line transects (Lines marked in <a href="#remotesensing-07-04804-f001" class="html-fig">Figure 1</a>).</p> ">
Abstract
:1. Introduction
2. Study Site and Datasets
Parameters | Value |
---|---|
Spectral rang(um) | 8–11.5 |
Spectral resolution(um) | 0.1095 |
Band number | 32 |
IFOV | 0.068° |
FOV | 40° |
Across track pixels no | 600 |
Signal quantization level | 14 bits |
ID | Satellite Sensor | Acquisition Time | Resolution(m) |
---|---|---|---|
1 | Landsat TM | 5 September 2006; 23 2007; 12 August 2009; 15 August 2010 | 30/120 |
2 | TASI | Morning, 7 August 2010 (7:00–8:00); Noon, 7 August 2010 (12:00–13:00); Noon, 15 August 2010 (13:00–14:00); Evening, 25 July 2010 (17:00–18:00); Evening, 27 July 2010 (17:00–18:00) | 0.6/1.25 |
3 | SASI | Noon, 15 August 2010 (13:00–14:00) | 1.25 |
4 | WordView-2 | 15 September 2010 | 0.5/2 |
3. Methodology
3.1. Image Pre-Processing
3.2. Retrieval of Impervious Surface Area from Landsat TM Images
3.3. Derivation of Remote Sensing Indices from Landsat TM Images
3.4. Derivation of Surface Temperature
3.4.1. Retrieval of Surface Temperature from Landsat TM Images
3.4.2. Retrieval of Surface Temperature from TASI Images
3.5. Retrieval of Land Cover Patterns from Landsat and TASI Images
Date | OA (Overall Accuracy %) | KC (Kappa Coefficient) | Total of samples |
---|---|---|---|
5 September 2006 | 90.47 | 0.92 | 1039 |
23 August 2007 | 91.09 | 0.93 | 1148 |
12 August 2009 | 90.33 | 0.93 | 1362 |
15 August 2010 | 91.71 | 0.92 | 1190 |
Land Cover Type | Description |
---|---|
Rooftop | Metal rooftop |
Concrete | Concrete built-up areas |
Water body | Rivers, lakes |
Bare soil | Bare soil, fallow |
Mixed asphalt | Asphalt and old concrete built-up areas |
Vegetation | Farmland, grass |
Tree | Farmland trees, roadside trees, trees around water bodies |
4. Result analysis
4.1. Analysis of the Urban Thermal Patterns at the Mesoscale Level
4.1.1. Spatial Pattern of Urban Thermal Environment
Date | Statistics | Bare Soil | Water | Vegetation | Built-Up | Metal Rooftops |
---|---|---|---|---|---|---|
5 September 2006 | MEAN | 25.3 | 24.1 | 23.5 | 25.4 | 28.6 |
SD | 1.23 | 2.35 | 0.66 | 1.77 | 2.54 | |
23 August 2007 | MEAN | 33.7 | 30.7 | 28.3 | 32.7 | 35.2 |
SD | 3.04 | 2.9 | 1.34 | 1.99 | 2.18 | |
12 August 2009 | MEAN | 36.6 | 33.4 | 32.1 | 36.7 | 37.6 |
SD | 2.56 | 3.07 | 1.33 | 2.34 | 3.04 | |
15 August 2010 | MEAN | 34.2 | 30.6 | 29.5 | 33.3 | 34.3 |
SD | 2.36 | 2.93 | 1.19 | 2.03 | 2.55 |
Date | Statistics | ISA(10–30) | ISA(30–50) | ISA(50–75) | ISA(75–) |
---|---|---|---|---|---|
5 September 2006 | MEAN | 24.1 | 25.7 | 26.0 | 26.4 |
SD | 1.90 | 2.17 | 2.26 | 2.32 | |
23 August 2007 | MEAN | 29.8 | 32.1 | 33.2 | 34.1 |
SD | 2.62 | 2.43 | 2.53 | 2.25 | |
12 August 2009 | MEAN | 34.4 | 37.6 | 37.7 | 38.0 |
SD | 2.90 | 2.82 | 2.85 | 2.90 | |
15 August 2010 | MEAN | 31.2 | 33.8 | 33.9 | 34.0 |
SD | 2.61 | 2.42 | 2.47 | 2.56 |
Type/Date | 5 September 2006 | 23 August 2007 | 12 August 2009 | 15 August 2010 |
---|---|---|---|---|
Urban Mean LST | 26.1 | 32.8 | 37.0 | 33.7 |
Rural Mean LST | 23.8 | 29.3 | 33.2 | 30.2 |
SUHI Intensity | 2.3 | 3.5 | 3.8 | 3.5 |
4.1.2. Relationships among LST and RSIs, ISA%
4.2. Analysis of Urban Thermal Patterns at the Microscale Level
Date | Augest 7 (7:00–8:00) | Augest 7 (12:00–13:00) | Augest 15 (13:00–14:00) | July 25 (17:00–18:00) | July 27 (17:00–18:00) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Land Cover Type | MEAN | SD | MEAN | SD | MEAN | SD | MEAN | SD | MEAN | SD |
Rooftop | 21.21 | 1.24 | 36.41 | 4.53 | 43.99 | 5.09 | 34.71 | 3.18 | 30.63 | 1.14 |
Concrete | 21.93 | 1.16 | 33.45 | 3.19 | 40.76 | 4.99 | 36.39 | 3.09 | 31.19 | 1.25 |
Water | 23.24 | 1.57 | 28.08 | 2.86 | 31.30 | 4.09 | 32.66 | 2.83 | 29.12 | 1.49 |
Soil | 21.29 | 1.09 | 31.76 | 3.24 | 37.38 | 5.08 | 35.12 | 3.19 | 30.70 | 1.25 |
Mixed Asphalt | 22.02 | 1.07 | 33.24 | 4.13 | 39.10 | 6.58 | 36.18 | 3.48 | 31.26 | 1.48 |
Vegetation | 20.82 | 0.91 | 28.78 | 2.69 | 33.31 | 3.57 | 32.58 | 2.93 | 29.62 | 1.19 |
Tree | 21.69 | 0.89 | 29.21 | 3.13 | 33.87 | 4.29 | 33.33 | 2.71 | 29.97 | 1.19 |
4.3. Comparison of the TASI and LANDSAT TM LST
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in china during 1995–2000. Sci. China Series D: Earth Sci. 2003, 46, 373–384. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Pongracz, R.; Bartholy, J.; Dezso, Z. Remotely sensed thermal information applied to urban climate analysis. Adv. Space Res. 2006, 37, 2191–2196. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature—Vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Nichol, J.E.; Fung, W.Y.; Lam, K.-S.; Wong, M.S. Urban heat island diagnosis using aster satellite images and “in situ” air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. Modis detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of european cities with modis land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from landsat ETM+ and corine land cover data: An application to major cities in greece. Solar Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Su, Y.-F.; Foody, G.M.; Cheng, K.-S. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Cai, G.; Du, M.; Xue, Y. Monitoring of urban heat island effect in beijing combining ASTER and TM data. Int. J. Remote Sens. 2011, 32, 1213–1232. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of houston, texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Roberts, D.A.; Quattrochi, D.A.; Hulley, G.C.; Hook, S.J.; Green, R.O. Synergies between vswir and tir data for the urban environment: An evaluation of the potential for the hyperspectral infrared imager (hyspiri) decadal survey mission. Remote Sens. Environ. 2012, 117, 83–101. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Michishita, R.; Sasagawa, T. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens. Environ. 2006, 104, 211–225. [Google Scholar] [CrossRef]
- Morse, C.C.; Huryn, A.D.; Cronan, C. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in maine, USA. Environ. Monit. Assess. 2003, 89, 95–127. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time aster satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in indianapolis, united states. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, ndvi and ndbi, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Raynolds, M.; Comiso, J.; Walker, D.; Verbyla, D. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. 1995, 34, 745–756. [Google Scholar]
- Yang, H.; Zhang, L.; Zhang, X.; Fang, C.; Tong, Q. Algorithm of emissivity spectrum and temperature separation based on tasi data. Yaogan Xuebao J. Remote Sens. 2011, 15, 1242–1254. [Google Scholar]
- Liu, K.; Zhang, X.; Li, X.; Jiang, H. Multiscale analysis of urban thermal characteristics: Case study of Shijiazhuang, China. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Googele Earth. Available online: http://earth.Google.Com. (accessed on 30 October 2013).
- Hang, Y.; Lifu, Z.; Yingqian, G.; Shunshi, H.; Xueke, L.; Genzhong, Z.; Qingxi, T. Temperature and emissivity separation from thermal airborne hyperspectral imager (TASI) data. Photogramm. Eng. Remote Sens. 2013, 79, 1099–1107. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sens. Environ. 2004, 93, 480–492. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a vis (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from tm imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Zhang, L.; Furumi, S.; Muramatsu, K.; Fujiwara, N.; Daigo, M.; Zhang, L. A new vegetation index based on the universal pattern decomposition method. Int. J. Remote Sens. 2007, 28, 107–124. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from ndvi: Application to european, african, and south american areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring landsat satellite images. Remote Sens. Environ. 2009, 113, 957–964. [Google Scholar] [CrossRef]
- A practical guide to support vector classification. Available online: https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf (accessed on 15 April 2015).
- Li, X.; Meng, Q.; Gu, X.; Jancso, T.; Yu, T.; Wang, K.; Mavromatis, S. A hybrid method combining pixel-based and object-oriented methods and its application in hungary using chinese HJ-1 satellite images. Int. J. Remote Sens. 2013, 34, 4655–4668. [Google Scholar] [CrossRef]
- Shafarenko, L.; Petrou, M.; Kittler, J. Automatic watershed segmentation of randomly textured color images. IEEE Trans. Image Process. 1997, 6, 1530–1544. [Google Scholar] [CrossRef] [PubMed]
- Hu, D. Analysis of surface radiation budget during the summer and winter in the metropolitan area of Beijing, China. J. Appl. Remote Sens. 2010, 4. [Google Scholar] [CrossRef]
- Ding, H.; Shi, W. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing city. Int. J. Remote Sens. 2013, 34, 5503–5517. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens. Environ. 2013, 133, 62–70. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Oguchi, T. An endmember optimization approach for linear spectral unmixing of fine-scale urban imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 137–146. [Google Scholar] [CrossRef]
- Xu, H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (ndisi). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. Geosci. IEEE Trans. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Stud. Res. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Chudnovsky, A.; Ben-Dor, E.; Saaroni, H. Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build. 2004, 36, 1063–1074. [Google Scholar] [CrossRef]
- Hardgrove, C.; Moersch, J.; Whisner, S. Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features. Earth Planet. Sci. Lett. 2009, 285, 124–130. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, L.; Li, B.; Yu, J. Towards a comprehensive evaluation of vis sub-pixel fractions and land surface temperature for urban land-use classification in the USA. Int. J. Remote Sens. 2012, 33, 5996–6019. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Jiménez-Muñoz, J.C.; Julien, Y.; Soria, G.; Franch, B.; Mattar, C. Emissivity mapping over urban areas using a classification-based approach: Application to the dual-use european security IR experiment (desirex). Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 141–147. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of shanghai, china. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data. Remote Sens. 2015, 7, 4804-4833. https://doi.org/10.3390/rs70404804
Liu K, Su H, Zhang L, Yang H, Zhang R, Li X. Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data. Remote Sensing. 2015; 7(4):4804-4833. https://doi.org/10.3390/rs70404804
Chicago/Turabian StyleLiu, Kai, Hongbo Su, Lifu Zhang, Hang Yang, Renhua Zhang, and Xueke Li. 2015. "Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data" Remote Sensing 7, no. 4: 4804-4833. https://doi.org/10.3390/rs70404804
APA StyleLiu, K., Su, H., Zhang, L., Yang, H., Zhang, R., & Li, X. (2015). Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data. Remote Sensing, 7(4), 4804-4833. https://doi.org/10.3390/rs70404804