Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring
"> Figure 1
<p>The former military training area Döberitzer Heide, visualized on flight stripes of the hyperspectral airplane campaign; field plots for plant species sampling are distributed in four open dryland areas; the test area for spatially explicit model transfer is marked in green.</p> "> Figure 2
<p>Methodological framework presented as a conceptual workflow: (<b>A</b>) plant species ordination; (<b>B</b>) functional habitat type and pressure aggregation; (<b>C</b>) continuous pattern prediction; (<b>D</b>) pattern recognition and spectral calibration; and (<b>E</b>) spatially explicit predictions on the basis of image spectra.</p> "> Figure 3
<p>(<b>a</b>) Reference ordination space for open dryland habitats within the study area. Ordination scores were standardized between 0 and 1; point size is positively correlated to species cover of major indicator species. Green = <span class="html-italic">Corynephorus canescens</span>; blue = <span class="html-italic">Festuca ovina agg.</span>; orange = <span class="html-italic">Calluna vulgaris</span>. (<b>b</b>) Boxplot for 1000 bootstrapped correlations (µA) and for 1000 randomly permuted correlations (µ0) for ordination axes scores NMS1 and NMS2.</p> "> Figure 4
<p>Kriging predictions for habitat type probability on the ordination plane. Isolines and allocated color transitions represent regions of similar floristic composition on the basis of realized habitat type probability functions. The 30% probability threshold is visualized with a dashed line.</p> "> Figure 5
<p>Relative strength of inter-habitat transition, as visualized by the arithmetic product of habitat-type probabilities below 50%. The color scale is min/max normalized over all transition pairs.</p> "> Figure 6
<p>Kriging predictions for pressure strength on the basis of realized pressure functions. Letters correspond to pressure-factor complexes in <a href="#remotesensing-07-02871-t003" class="html-table">Table 3</a>, and dashed lines denote a habitat type probability of 30%.</p> "> Figure 7
<p>Probability for a Natura 2000 assessment of conservation status of three habitat types on an ordination plane. Equally spaced thresholds for assessment categories are shown by dotted lines.</p> "> Figure 8
<p><b>Top panel</b>: AISA DUAL true-color composite image of the test area (<b>left</b>); open dryland extraction after masking trees and shadows (<b>right</b>). <b>Middle panel</b>: spatial occurrence probability predictions of three habitat types. <b>Bottom panel</b>: continuous habitat type conservation status predictions with color centroids representing status (A: excellent; B: good; C: adverse); a typical transitional area between the three habitat types was exposed in the subplot zoom.</p> ">
Abstract
:1. Introduction
- (a)
- The floristic variety can be described by ordination; integration of new species does not change the ordination space fundamentally;
- (b)
- Habitat types, transitions, or pressure indicators can be described continuously within the specific ordination space via spatial correlation functions; on that basis a Natura 2000 habitat conservation status assessment can be derived for management purposes;
- (c)
- Distinct habitat type areas in the ordination space can be related to patterns of reflectance.
2. Material and Methods
2.1. Study Area
2.2. Floristic Data
2.3. Species Ordination and Floristic Pattern Significance
2.4. Habitat Type and Habitat Pressure Aggregation
Habitat Type | Habitat Type Probability z(u) | Pressure Strength z(u) | ||
---|---|---|---|---|
Weight [β] | Component [N] | Weight [β] | Component [N] | |
LRT 2330 | 1 | Corynephorus canescens | 1 | Calamagrostis epigejos |
0.5 | Bare ground cover | 1 | Agrostis capillaris | |
0.2 | Cladonia sp. | 1 | Rubus caesius | |
0.5 | Rumex acetosella | |||
0.5 | Polytrichum piliferum | |||
0.5 | Hieracium pilosella | |||
0.2 | Cladonia sp. | |||
LRT 4030 | 1 | Calluna vulgaris | 1 | Populus tremula juv. |
0.5 | Cladonia sp. | 1 | Sarothamnus scoparius | |
1 | Deschampsia flexuosa | |||
1 | Festuca ovina agg. | |||
1 | Nardus stricta | |||
1 | Calamagrostis epigejos | |||
1 | Agrostis capillaris | |||
0.5 | Polytrichum piliferum | |||
0.2 | Cladonia sp. | |||
LRT 6120 | 1 | Festuca ovina agg. | 1 | Populus tremula juv. |
0.5 | Agrimonia eupatoria | 1 | Sarothamnus scoparius | |
0.5 | Galium verum | 1 | Rubus caesius | |
0.5 | Koeleria macrantha | 1 | Luzula campestris agg. | |
0.5 | Ononis repens | 1 | Calamagrostis epigejos | |
0.5 | Peucedanum oreoselinum | 1 | Plantago lanceolata | |
0.2 | Agrostis capillaris | 1 | Arrhenatherum elatius | |
1 | Tanacetum vulgare | |||
0.5 | Deschampsia flexuosa | |||
0.5 | Holcus lanatus | |||
0.5 | Rumex acetosella | |||
0.5 | Artemisia campestris | |||
0.2 | Festuca ovina agg. | |||
0.2 | Agrostis capillaris |
2.5. Surface Analysis and Interpolation in the Ordination Space
2.6. Habitat Transition and Habitat Pressure Analysis
2.7. Spectral Data
3. Results
3.1. Ordination Space Stability and Pattern Significance
3.2. Variography
Spatial Regression | Variography | |||||||
---|---|---|---|---|---|---|---|---|
LRT 2330 | R2 reg | dim reg | R2 vario | model | cn | c0 | a0 | |
Habitat Type Probability | ter. habitat type | 0.893 | v2 | 0.704 | Mat | 0,000 | 0.059 | 0.214 |
fun. habitat type | 0.729 | v1,v2 | 0.893 | Cir | 0.009 | 0.028 | 0.221 | |
Pressure Strength | ter. assessment | 0.809 | v2 | 0.752 | Mat | 0.000 | 0.026 | 0.196 |
fun. pressure | 0.365 | v2 | 0.839 | Sph | 0.000 | 0.086 | 0.306 | |
LRT 4030 | ||||||||
Habitat Type Probability | ter. habitat type | 0.783 | v1,v2 | 0.933 | Mat | 0.000 | 0.094 | 0.588 |
fun. habitat type | 0.871 | v1,v2 | 0.932 | Cir | 0.002 | 0.022 | 0.366 | |
Pressure Strength | ter. assessment | 0.65 | v1,v2 | 0.424 | Mat | 0.000 | 0.047 | 0.131 |
fun. pressure | 0.693 | v1,v2 | 0.362 | Sph | 0.000 | 0.033 | 0.176 | |
LRT 6120 | ||||||||
Habitat Type Probability | ter. habitat type | 0.609 | v1,v2 | 0.954 | Mat | 0.000 | 0.193 | 0.555 |
fun. habitat type | 0.491 | v1,v2 | 0.835 | Ste | 0.000 | 0.052 | 0.330 | |
Pressure Strength | ter. assessment | 0.449 | v1,v2 | 0.875 | Cir | 0.000 | 0.076 | 0.412 |
fun. pressure | 0.418 | v1,v2 | 0.698 | Sph | 0.005 | 0.035 | 0.579 |
3.3. Habitat Type Functions and Assessment of Pressures
Pressure | LRT 2330 | LRT 4030 | LRT 6120 | |||
---|---|---|---|---|---|---|
Fraction | Plant Species | Fraction | Plant Species | Fraction | Plant Species | |
a | 1.00 0.66 | Cladonia sp. Polytrichum piliferum | 1.00 | Festuca ovina agg. | 1.00 | Populus tremula juv. |
0.72 | Rumex acetosella | 0.75 | Calamagrostis epigejos | |||
0.60 | Agrostis capillaris | 0.47 | Luzula campestris | |||
b | 1.00 | Polytrichum piliferum | 1.00 | Calamagrostis epigejos | 1.00 | Populus tremula juv. |
0.99 | Rubus caesisus | 0.62 | Agrostis capillaris | 0.70 | Festuca ovina agg. | |
0.69 | Rumex acetosella | 0.55 | Rumex acetosella | 0.60 | Agrostis capillaris | |
c | 1.00 | Rumex acetosella | 1.00 | Calamagrostis epigejos | 1.00 | Festuca ovina agg. |
0.92 | Agrostis capillaris | 0.52 | Sarothamnus scoparius | 0.84 | Agrostis capillaris | |
0.44 | Calamagrostis epigejos | 0.42 | Agrostis capillas | 0.80 | Rumex acetosella | |
d | 1.00 | Agrostis capillaris | 1.00 | Luzula campestris | 1.00 | Agrostis capillaris |
0.90 | Hieracium pilosella | 0.83 | Sarothmanus scoparius | 1.00 | Plantago lanceolata | |
0.48 | Ornithopus perpusillus | 0.83 | Nardus stricta | 0.75 | Trifolium arvense | |
e | 1.00 | Nardus stricta | 1.00 | Calamagrostis epigejos | ||
0.84 | Deschampsia flexuosa | 0.44 | Poa angustifolia | |||
0.56 | Danthonia decumbens | 0.38 | Tanacetum vulgare | |||
f | 1.00 | Deschampsia flexuosa | 1.00 | Calamagrostis epigejos | ||
0.91 | Nardus stricta | 0.34 | Arrhenatherum elatius | |||
0.57 | Cladonia sp. | 0.34 | Poa angustifolia | |||
g | 1.00 | Populus tremula juv. | ||||
0.33 | Cladonia spec. | |||||
0.33 | Polytrichum piliferum |
3.4. Spectral Predictability
(a) | Occurrence Probability | Assessment Categories | ||
---|---|---|---|---|
cor | RMSE [%] | cor | RMSE [%] | |
LRT 2330 | 0.937 | 15 | 0.918 | 12 |
LRT 4030 | 0.971 | 10 | 0.925 | 8 |
LRT 6120 | 0.811 | 20 | 0.859 | 15 |
(b) | Spectral Model NMS1 | Spectral Model NMS2 | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE [%] | n_C | n_pred | R2 | RMSE [%] | n_C | n_pred | |
LRT 2330 | 0.491 | 21 | 2 | 147 | 0.827 | 10 | 2 | 142 |
LRT 4030 | 0.820 | 12 | 2 | 68 | 0.130 | 20 | 2 | 61 |
LRT 6120 | 0.789 | 12 | 2 | 9 | 0.854 | 10 | 2 | 14 |
4. Discussion
4.1. Spatial Correlation
4.2. Species Composition
4.3. Spectral Application
4.4. Conservation Status Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Apitz, S.E.; Elliott, M.; Fountain, M.; Galloway, T.S. European environmental management: Moving to an ecosystem approach. Integr. Environ. Assess. Manag. 2006, 2, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Aplin, P. Remote sensing: Ecology. Prog. Phys. Geogr. 2005, 29, 104–113. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; de Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar]
- Spanhove, T.; Vanden Borre, J.; Delalieux, S.; Haest, B.; Paelinckx, D. Can remote sensing estimate fine-scale quality indicators of natural habitats? Ecol. Indic. 2012, 18, 403–412. [Google Scholar] [CrossRef]
- Stenzel, S.; Feilhauer, H.; Mack, B.; Metz, A.; Schmidtlein, S. Remote sensing of scattered Natura 2000 habitats using a one-class classifier. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 211–217. [Google Scholar] [CrossRef]
- Asner, G.P.; Braswell, B.H.; Schimel, D.S.; Wessman, C.A. Ecological research needs from multiangle remote sensing data. Remote Sens. Environ. 1998, 63, 155–165. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Rossner, G.; Wissen, M.; Remm, K.; Langanke, T.; Lang, S.; Klug, H.; Blaschke, T.; Vrščaj, B. Spatial indicators for nature conservation from European to local scale. Ecol. Indic. 2005, 5, 322–338. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C. Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites. For. Ecol. Manag. 2008, 256, 815–826. [Google Scholar] [CrossRef]
- Förster, M.; Frick, A.; Walentowski, H.; Kleinschmit, B. Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats. Community Ecol. 2008, 9, 155–168. [Google Scholar] [CrossRef]
- Mücher, C.A.; Hennekens, S.M.; Bunce, R.G.; Schaminée, J.H.; Schaepman, M.E. Modelling the spatial distribution of Natura 2000 habitats across Europe. Landsc. Urban Plan. 2009, 92, 148–159. [Google Scholar] [CrossRef]
- Mücher, C.A.; Kooistra, L.; Vermeulen, M.; Borre, J.V.; Haest, B.; Haveman, R. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol. Indic. 2013, 33, 71–81. [Google Scholar] [CrossRef]
- Haest, B.; Thoonen, G.; Borre, J.V.; Spanhove, T.; Delalieux, S.; Bertels, L.; Kooistra, L.; Mücher, C.A.; Scheunders, P. An object-based approach to quantity and quality assessment of heathland habitats in the framework of NATURA 2000 using hyperspectral airborne AHS images. In Proceedings of the Third International Conference on All Aspects of Geographic Object-Based Image Analysis, Gent, Belgium, 29 June–2 July 2010.
- Feilhauer, H.; Dahlke, C.; Doktor, D.; Lausch, A.; Schmidtlein, S.; Schulz, G.; Stenzel, S. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 2014, 17, 765–779. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Rocchini, D.; Foody, G.M.; Nagendra, H.; Ricotta, C.; Anand, M.; He, K.S.; Amici, V.; Kleinschmit, B.; Förster, M.; Schmidtlein, S.; et al. Uncertainty in ecosystem mapping by remote sensing. Comput. Geosci. 2013, 50, 128–135. [Google Scholar] [CrossRef]
- Palmer, M.W.; White, P.S. On the existence of ecological communities. J. Veg. Sci. 1994, 5, 279–282. [Google Scholar] [CrossRef]
- Gleason, H.A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 1926, 53, 7–26. [Google Scholar] [CrossRef]
- Goodall, D.W. The continuum and the individualistic association. Vegetatio 1963, 11, 297–316. [Google Scholar]
- McIntosh, R.P. The continuum concept of vegetation. Bot. Rev. 1967, 33, 130–187. [Google Scholar] [CrossRef]
- Gosz, J.R. Fundamental ecological characteristics of landscape boundaries. In Ecotones; Springer: New York, NY, USA, 1991; pp. 8–30. [Google Scholar]
- Risser, P.G. The status of the science examining ecotones. BioScience 1995, 45, 318–325. [Google Scholar] [CrossRef]
- Velázquez, J.; Tejera, R.; Hernando, A.; Victoria Núñez, M. Environmental diagnosis: Integrating biodiversity conservation in management of Natura 2000 forest spaces. J. Nat. Conserv. 2010, 18, 309–317. [Google Scholar] [CrossRef]
- Austin, M.P. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 1985, 16, 39–61. [Google Scholar] [CrossRef]
- Trodd, N.M. Analysis and representation of heathland vegetation from near-ground level remotely-sensed data. Glob. Ecol. Biogeogr. Lett. 1996, 206–216. [Google Scholar] [CrossRef]
- Feilhauer, H.; Faude, U.; Schmidtlein, S. Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sens. Environ. 2011, 115, 2513–2524. [Google Scholar] [CrossRef]
- Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 218–229. [Google Scholar] [CrossRef]
- Armitage, R.P.; Kent, M.; Weaver, R.E. Identification of the spectral characteristics of British semi-natural upland vegetation using direct ordination: A case study from Dartmoor, UK. Int. J. Remote Sens. 2004, 25, 3369–3388. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Sassin, J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sens. Environ. 2004, 92, 126–138. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Zimmermann, P.; Schüpferling, R.; Weiss, C. Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy. J. Veg. Sci. 2007, 18, 131–140. [Google Scholar] [CrossRef]
- Thessler, S.; Ruokolainen, K.; Tuomisto, H.; Tomppo, E. Mapping gradual landscape‐scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Glob. Ecol. Biogeogr. 2005, 14, 315–325. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Feilhauer, H.; Bruelheide, H. Mapping plant strategy types using remote sensing. J. Veg. Sci. 2012, 23, 395–405. [Google Scholar] [CrossRef]
- Schmidtlein, S. Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J. Appl. Ecol. 2005, 42, 966–974. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; Spaargaren, O.; Deckers, J.A.; Ahrens, B. New developments in soil classification: World Reference Base for Soil Resources. Geoderma 2000, 96, 345–357. [Google Scholar] [CrossRef]
- Lebensraumtypen nach Anhang I der FFH-Richtlinie/LUGV. Available online: http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.315320.de (accessed on 8 February 2015).
- Barclay-Estrup, P.; Gimingham, C.H. The description and interpretation of cyclical processes in a heath community: I. vegetational change in relation to the calluna cycle. J. Ecol. 1969, 737–758. [Google Scholar] [CrossRef]
- Wilmanns, O. Ökologische Pflanzensoziologie: Eine Einführung in Die Vegetation Mitteleuropas, 6th ed.; Quelle & Meyer: Wiesbaden, Germany, 1998. [Google Scholar]
- Rothmaler, W.; Jäger, E.J.; Werner, K. Exkursionsflora von Deutschland, Gefäßpflanzen: Kritischer Band, 4th ed.; Elsevier: München, Germany, 2005. [Google Scholar]
- Beschlüsse der Arbeitsgemeinschaft “Naturschutz” der Landesumweltministerien (LANA). Available online: http://www.bfn.de/fileadmin/MDB/documents/030306_lana.pdf (accessed on 8 February 2015).
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Gauch, H.G. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Pillar, V.D. The bootstrapped ordination re‐examined. J. Veg. Sci. 1999, 10, 895–902. [Google Scholar] [CrossRef]
- Manjarrés-Martínez, L.M.; Gutierrez‐Estrada, J.C.; Hernando, J.A.; Soriguer, M.C. The performance of three ordination methods applied to demersal fish data sets: Stability and interpretability. Fish. Manag. Ecol. 2011, 19, 200–213. [Google Scholar] [CrossRef]
- Knox, R.G.; Peet, R.K. Bootstrapped ordination: A method for estimating sampling effects in indirect gradient analysis. Vegetatio 1989, 80, 153–165. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap (Vol. 57); CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Schönemann, P.H.; Carroll, R.M. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 1970, 35, 245–255. [Google Scholar] [CrossRef]
- Matheron, G. The Theory of Regionalized Variables and Its Applications (Vol. 5); Ecole nationale supérieure des mines de Paris: Paris, France, 1971. [Google Scholar]
- Borg, I. Modern Multidimensional Scaling: Theory and Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- Matheron, G. Random functions and their application in geology. In Geostatistics; Springer: New York, NY, USA, 1970; pp. 79–87. [Google Scholar]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Dowd, P.A. The variogram and kriging: Robust and resistant estimators. Geostat. Nat. Resour. Charact. 1984, 1, 91–106. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Hiemstra, P.H.; Pebesma, E.J.; Twenhöfel, C.J.; Heuvelink, G. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 2009, 35, 1711–1721. [Google Scholar] [CrossRef]
- Hengl, T.; Toomanian, N.; Reuter, H.I.; Malakouti, M.J. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 2007, 140, 417–427. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of The Second International Symposium on Information Theory; Csáki, F., Petrov, B.N., Eds.; Akademinai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rogaß, C.; Spengler, D.; Bochow, M.; Segl, K.; Lausch, A.; Doktor, D.; Roessner, S.; Behling, R.; Wetzel, H.U.; Kaufmann, H. Reduction of radiometric miscalibration—applications to pushbroom sensors. Sensors 2011, 11, 6370–6395. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Gorelick, N.S. Automatic continuum analysis of reflectance spectra. In Proceedings of the Third AIS Workshop, JPL Publication 87–30, Jet Propulsion Laboratory, Pasadena, CA, USA, 2–4 June 1987; pp. 138–142.
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Farrar, D.E.; Glauber, R.R. Multicollinearity in regression analysis: The problem revisited. Rev. Econ. Stat. 1967, 49, 92–107. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Wold, H. Estimation of principal components and related models by iterative least squares. Multivar. Anal. 1966, 1, 391–420. [Google Scholar]
- Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. J. Chemom. 1996, 10, 119–133. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 11, 7–50. [Google Scholar]
- Evans, D.; Arvela, M. Assessment and Reporting under Article 17 of the Habitats Directive. Explanatory Notes and Guidelines for the Period 2007–2012; Final Draft; European Topic Centre on Biological Diversity: Paris, France, 2011. [Google Scholar]
- Christakos, G. On the problem of permissible covariance and variogram models. Water Resour. Res. 1984, 20, 251–265. [Google Scholar] [CrossRef]
- Gorsich, D.J.; Genton, M.G. Variogram model selection via nonparametric derivative estimation. Math. Geol. 2000, 32, 249–270. [Google Scholar] [CrossRef]
- Hauser, M.; Mucina, L. Spatial interpolation methods for interpretation of ordination diagrams. In Computer Assisted Vegetation Analysis; Springer: Dordrecht, Netherlands, 1991; pp. 299–316. [Google Scholar]
- Ejrnæs, R.; Aude, E.; Nygaard, B.; Münier, B. Prediction of habitat quality using ordination and neural networks. Ecol. Appl. 2002, 12, 1180–1187. [Google Scholar] [CrossRef]
- Dargie, T.C.D. On the integrated interpretation of indirect site ordinations: A case study using semi-arid vegetation in southeastern Spain. Vegetatio 1984, 55, 37–55. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Price, J.C. How unique are spectral signatures? Remote Sens. Environ. 1994, 49, 181–186. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Feilhauer, H.; Schmidtlein, S. On variable relations between vegetation patterns and canopy reflectance. Ecol. Inform. 2011, 6, 83–92. [Google Scholar] [CrossRef]
- Bock, M.; Xofis, P.; Mitchley, J.; Rossner, G.; Wissen, M. Object-oriented methods for habitat mapping at multiple scales–Case studies from Northern Germany and Wye Downs, UK. J. Nat. Conserv. 2005, 13, 75–89. [Google Scholar] [CrossRef]
- SPECTATION. Available online: http://www-app2.gfz-potsdam.de/spectation/?file=main (accessed on 8 February 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, C.; Weiss, G.; Schmidtlein, S.; Itzerott, S.; Lausch, A.; Doktor, D.; Brell, M. Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring. Remote Sens. 2015, 7, 2871-2898. https://doi.org/10.3390/rs70302871
Neumann C, Weiss G, Schmidtlein S, Itzerott S, Lausch A, Doktor D, Brell M. Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring. Remote Sensing. 2015; 7(3):2871-2898. https://doi.org/10.3390/rs70302871
Chicago/Turabian StyleNeumann, Carsten, Gabriele Weiss, Sebastian Schmidtlein, Sibylle Itzerott, Angela Lausch, Daniel Doktor, and Maximilian Brell. 2015. "Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring" Remote Sensing 7, no. 3: 2871-2898. https://doi.org/10.3390/rs70302871
APA StyleNeumann, C., Weiss, G., Schmidtlein, S., Itzerott, S., Lausch, A., Doktor, D., & Brell, M. (2015). Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring. Remote Sensing, 7(3), 2871-2898. https://doi.org/10.3390/rs70302871