Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine
<p>Two-dimensional Gabor kernels with different orientations, from left to right: 0, <span class="html-italic">π</span>/8, <span class="html-italic">π</span>/4, 3<span class="html-italic">π</span>/8, <span class="html-italic">π</span>/2, 5<span class="html-italic">π</span>/8, 3<span class="html-italic">π</span>/4, and 7<span class="html-italic">π</span>/8.</p> ">
<p>The proposed spectral-spatial KELM framework for hyperspectral image classification (first row: Gabor-KELM; second row: MH-KELM).</p> ">
<p>False-color images: (<b>a</b>) Indian Pines dataset, using bands 10, 20, and 30 for red, green, and blue, respectively; and (<b>b</b>) University of Pavia dataset, using bands 20, 40, and 60 for red, green, and blue, respectively.</p> ">
<p>Classification accuracy (%) <span class="html-italic">versus</span> varying <span class="html-italic">δ</span> and bw for the proposed Gabor-KELM using 20 labeled samples per class for (<b>a</b>) Indian Pines dataset; and (<b>b</b>) University of Pavia dataset.</p> ">
<p>Classification accuracy (%) <span class="html-italic">versus</span> varying search-window size (<span class="html-italic">d</span>) for the proposed MH-KELM using 20 labeled samples per class for two experimental datasets.</p> ">
<p>Classification accuracy (%) for Indian Pines and University of Pavia datasets as a function of the MH-prediction regularization parameter <span class="html-italic">λ</span> for the proposed MH-KELM using 20 labeled samples per class. The search-window size for MH prediction is <span class="html-italic">d</span> = 9 × 9.</p> ">
<p>Thematic maps resulting from classification using 1018 training samples (10% per class) for the Indian Pines dataset with 16 classes. The overall classification accuracy of each algorithm is indicated in parentheses.</p> ">
<p>Thematic maps resulting from classification using 423 training samples (1% per class) for the University of Pavia dataset. The overall classification accuracy of each algorithm is indicated in parentheses.</p> ">
Abstract
:1. Introduction
2. Spectral-Spatial Kernel Extreme Learning Machine
2.1. Gabor Filter
2.2. MH Prediction for Spatial Features Extraction
2.3. Kernel Extreme Learning Machine
2.4. Proposed Spectral-Spatial Kernel Extreme Learning Machine
3. Experiments
3.1. Data Description and Experimental Setup
3.2. Parameter Tuning
3.3. Classification Results
4. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsAll authors conceived and designed the study. Chen Chen and Wei Li carried out the experiments. All authors discussed the basic structure of the manuscript, and Chen Chen finished the first draft. Wei Li, Hongjun Su and Kui Liu reviewed and edited the draft.
References
- Harsanyi, J.C.; Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens 1994, 32, 779–785. [Google Scholar]
- Ratle, F.; Camps-Valls, G.; Weston, J. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens 2010, 48, 2271–2282. [Google Scholar]
- Plaza, J.; Plaza, A.; Perez, R.; Martinez, P. Parallel Classification of Hyperspectral Images Using Neural Networks. In Computational Intelligence for Remote Sensing; Grana, M., Duro, R.J., Eds.; Springer-Verlag: Berlin, Germany, 2008; Volume 133, pp. 193–216. [Google Scholar]
- Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens 2006, 44, 3374–3385. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens 2004, 42, 1778–1790. [Google Scholar]
- Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Foody, G.M.; Ajay, M. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens 2004, 42, 1335–1343. [Google Scholar]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part. B 2012, 42, 513–529. [Google Scholar]
- Moreno, R.; Corona, F.; Lendasse, A.; Grana, M.; Galvao, L.S. Extreme learning machine for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128, 207–216. [Google Scholar]
- Pal, M. Extreme-learning-machine-based land cover classification. Int. J. Remote Sens 2009, 30, 3835–3841. [Google Scholar]
- Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett 2013, 4, 853–862. [Google Scholar]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett 2006, 3, 93–97. [Google Scholar]
- Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens 2013, 51, 257–272. [Google Scholar]
- Bau, T.C.; Sarkar, S.; Healey, G. Hyperspectral region classification using a three-dimensional Gabor filterbank. IEEE Trans. Geosci. Remote Sens 2010, 48, 3457–3464. [Google Scholar]
- Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens 2011, 49, 5039–5046. [Google Scholar]
- Huo, L.-Z.; Tang, P. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Gabor Textures. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1708–1711.
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens 2012, 50, 879–893. [Google Scholar]
- Chen, C.; Li, W.; Tramel, E.W.; Cui, M.; Prasad, S.; Fowler, J.E. Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 2014, 7, 1047–1059. [Google Scholar]
- Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens 2008, 46, 4173–4185. [Google Scholar]
- Kettig, R.L.; Landgrebe, D.A. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Trans. Geosci. Electron 1976, GE-14, 19–26. [Google Scholar]
- Landgrebe, D.A. The development of a spectral-spatial classifier for earth observational data. Pattern Recognit 1980, 12, 165–175. [Google Scholar]
- Huang, L.L.; Shimizu, A.; Kobatake, H. Robust face detection using Gabor filter features. Pattern Recognit. Lett 2005, 26, 1641–1649. [Google Scholar]
- Jain, A.K.; Ratha, N.K.; Lakshmanan, S. Object detection using gabor filters. Pattern Recognit 1997, 30, 295–309. [Google Scholar]
- Porat, M.; Zeevi, Y.Y. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Pattern Anal. Mach. Intell 1988, 10, 452–468. [Google Scholar]
- Hamamoto, Y.; Uchimura, S.; Watanabe, M.; Yasuda, T.; Mitani, Y.; Tomita, S. Object A gabor filter-based method for recognizing handwritten numerals. Pattern Recognit 1998, 31, 395–400. [Google Scholar]
- Clausi, D.A.; Jernigan, M.E. Designing Gabor filters for optimal texture separabilty. Pattern Recognit 2000, 33, 1835–1849. [Google Scholar]
- Chen, C.; Tramel, E.W.; Fowler, J.E. Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions. Proceedings of the 2011 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 6–9 November 2011; pp. 1193–1198.
- Chen, C.; Fowler, J.E. Single-Image Super-Resolution Using Multihypothesis Prediction. Proceedings of the 2012 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 4–7 November 2012; pp. 1193–1198.
- Chen, C.; Li, W.; Tramel, E.W.; Fowler, J.E. Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction. IEEE Trans. Geosci. Remote Sens 2014, 52, 365–374. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill Posed Problems; Winston & Sons: Washington, DC, USA, 1977. [Google Scholar]
- Huang, G.-B.; Chen, L.; Siew, C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw 2006, 17, 879–892. [Google Scholar]
- Serre, D. Matrices: Theory and Applications; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Du, Q.; Yang, H. Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett 2008, 5, 564–568. [Google Scholar]
- LIBSVM—A Library for Support Vector Machines. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 5 March 2014).
- MATLAB Codes for Extreme Learning Machine (ELM) Algorithm. Available online: http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html (accessed on 7 March 2014).
- Gamba, P. A Collection of Data for Urban Area Characterization. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 69–72.
- Huang, X.; Zhang, L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City northern Italy. Int. J. Remote Sens 2009, 30, 3205–3221. [Google Scholar]
- Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 20 December 2013).
- Hansen, C.; O’Leary, D.P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput 1993, 14, 1487–1503. [Google Scholar]
- Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens 2011, 49, 4865–4876. [Google Scholar]
Class | Number of Samples | |
---|---|---|
No. | Name | |
1 | Alfalfa | 46 |
2 | Corn-notill | 1428 |
3 | Corn-mintill | 830 |
4 | Corn | 237 |
5 | Grass-pasture | 483 |
6 | Grass-trees | 730 |
7 | Grass-pasture-mowed | 28 |
8 | Hay-windrowed | 478 |
9 | Oats | 20 |
10 | Soybean-notill | 972 |
11 | Soybean-mintill | 2455 |
12 | Soybean-clean | 593 |
13 | Wheat | 205 |
14 | Woods | 1265 |
15 | Building-grass-trees-drives | 386 |
16 | Stone-steel-towers | 93 |
Total | 10,249 |
Class | Number of Samples | |
---|---|---|
No. | Name | |
1 | Asphalt | 6631 |
2 | Meadows | 18,649 |
3 | Gravel | 2099 |
4 | Trees | 3064 |
5 | Painted metal sheets | 1345 |
6 | Bare soil | 5029 |
7 | Bitumen | 1330 |
8 | Self-blocking bricks | 3682 |
9 | Shadows | 947 |
Total | 42,776 |
Window Size (d) | Time (s) |
---|---|
3 | 6.4 |
5 | 13.7 |
7 | 39.4 |
9 | 109.5 |
11 | 260.2 |
13 | 564.6 |
Method | Number of Training Samples Per Class (Ratio) | ||
---|---|---|---|
20 (1.99%) | 30 (3.01%) | 40 (4.06%) | |
SVM | 65.83 ± 2.71 | 71.96 ± 2.20 | 75.67 ± 1.39 |
KELM | 68.28 ± 2.04 | 72.97 ± 1.47 | 76.02 ± 1.45 |
Gabor-SVM | 92.74 ± 1.22 | 95.25 ± 1.26 | 96.51 ± 1.05 |
Gabor-KELM | 93.02 ± 1.08 | 95.44 ± 1.03 | 96.64 ± 1.14 |
MH-SVM | 87.61 ± 2.01 | 89.91 ± 1.05 | 91.87 ± 0.86 |
MH-KELM | 92.43 ± 1.89 | 94.87 ± 0.98 | 96.75 ± 0.78 |
Method | Number of Training Samples Per Class (Ratio) | ||
---|---|---|---|
20 (2.27%) | 30 (3.45%) | 40 (4.65%) | |
SVM | 81.11 ± 1.15 | 82.80 ± 0.86 | 84.09 ± 0.63 |
KELM | 81.21 ± 1.64 | 82.96 ± 0.98 | 84.34 ± 0.64 |
Gabor-SVM | 90.83 ± 1.11 | 93.45 ± 1.48 | 94.88 ± 0.85 |
Gabor-KELM | 92.57 ± 1.49 | 94.77 ± 1.26 | 96.07 ± 0.92 |
MH-SVM | 92.85 ± 0.91 | 94.89 ± 0.74 | 95.74 ± 0.47 |
MH-KELM | 93.14 ± 1.05 | 95.29 ± 0.68 | 96.31 ± 0.53 |
Class | (SVM, KELM)(C1, C2) | (Gabor-SVM, Gabor-KELM)(C1, C2) | (MH-SVM, MH-KELM)(C1, C2) |
---|---|---|---|
Hay-windrowed | 1.73 | NaN | NaN |
Grass-pasture | −0.26 | 2.83 | 2.00 |
Soybean-clean | 0.32 | 1.51 | 4.56 |
Grass-trees | −0.76 | −1.41 | −0.77 |
Corn-mintill | 2.56 | 5.40 | 4.06 |
Soybean-notill | 1.53 | 2.89 | 6.35 |
Woods | 2.45 | −1.73 | −0.20 |
Corn-notill | 3.51 | 4.67 | 8.09 |
Soybean-mintill | 8.30 | −7.00 | 12.23 |
Overall | 6.09 | 1.34 | 16.65 |
Class | (SVM, KELM)(C1, C2) | (Gabor-SVM, Gabor-KELM)(C1, C2) | (MH-SVM, MH-KELM) (C1, C2) |
---|---|---|---|
Asphalt | 7.01 | −1.29 | 4.51 |
Meadows | −4.82 | 4.56 | −6.29 |
Gravel | 0 | −6.40 | 0.54 |
Trees | −2.47 | −1.13 | 2.71 |
Painted metal sheets | −1.73 | −1.00 | −1.00 |
Bare Soil | −1.07 | −7.75 | −0.23 |
Bitumen | −2.72 | −5.66 | −3.15 |
Self-Blocking Bricks | −2.10 | −0.99 | −5.17 |
Shadows | 5.66 | −1.04 | 6.71 |
Overall | −0.50 | −6.29 | −0.97 |
Class | Samples | SVM | KELM | Gabor-SVM | Gabor-KELM | MH-SVM | MH-KELM | |
---|---|---|---|---|---|---|---|---|
Train | Test | |||||||
Alfalfa | 4 | 42 | 57.14 | 54.76 | 64.29 | 97.62 | 26.19 | 90.48 |
Corn-notill | 142 | 1286 | 78.85 | 81.03 | 98.76 | 98.68 | 97.43 | 98.99 |
Corn-mintill | 83 | 747 | 62.25 | 62.78 | 97.86 | 98.39 | 96.12 | 99.06 |
Corn | 23 | 214 | 50.00 | 53.74 | 98.13 | 99.07 | 96.26 | 99.53 |
Grass-pasture | 48 | 435 | 93.56 | 90.80 | 99.54 | 100 | 97.47 | 100 |
Grass-trees | 73 | 657 | 95.28 | 95.28 | 100 | 100 | 99.70 | 100 |
Grass-pasture-mowed | 2 | 26 | 0 | 42.31 | 0 | 92.31 | 0 | 96.15 |
Hay-windrowed | 47 | 431 | 96.29 | 98.84 | 100 | 100 | 99.30 | 100 |
Oats | 2 | 18 | 0 | 33.33 | 100 | 100 | 0 | 100 |
Soybean-notill | 97 | 875 | 69.94 | 71.66 | 99.31 | 98.17 | 96.91 | 99.89 |
Soybean-mintill | 245 | 2210 | 88.64 | 85.48 | 99.32 | 99.28 | 97.24 | 99.41 |
Soybean-clean | 59 | 534 | 76.97 | 72.66 | 97.75 | 97.57 | 98.88 | 98.50 |
Wheat | 20 | 185 | 99.46 | 98.92 | 96.62 | 98.92 | 100 | 100 |
Woods | 126 | 1139 | 97.54 | 95.61 | 100 | 100 | 99.91 | 100 |
Bldg-Grass-Trees-Drives | 38 | 348 | 44.54 | 62.93 | 97.99 | 98.85 | 97.70 | 99.14 |
Stone-Steel-Towers | 9 | 84 | 94.05 | 75.00 | 100 | 100 | 95.24 | 98.81 |
OA | 82.00 | 82.02 | 98.64 | 99.08 | 97.10 | 99.44 | ||
AA | 69.03 | 73.45 | 90.57 | 98.68 | 81.15 | 98.75 | ||
κ | 79.28 | 79.37 | 98.44 | 98.95 | 96.69 | 99.36 |
Class | Samples | SVM | KELM | Gabor-SVM | Gabor-KELM | MH-SVM | MH-KELM | |
---|---|---|---|---|---|---|---|---|
Train | Test | |||||||
Asphalt | 66 | 6565 | 87.02 | 84.01 | 94.30 | 94.49 | 97.93 | 96.29 |
Meadows | 186 | 18463 | 97.28 | 97.51 | 99.82 | 99.96 | 99.91 | 99.98 |
Gravel | 20 | 2079 | 57.58 | 61.28 | 93.27 | 95.00 | 87.01 | 93.25 |
Trees | 30 | 3034 | 74.03 | 76.43 | 94.99 | 95.45 | 94.96 | 96.30 |
Painted metal sheets | 13 | 1332 | 99.25 | 99.47 | 99.77 | 99.92 | 99.55 | 99.70 |
Bare Soil | 50 | 4979 | 57.02 | 60.88 | 99.92 | 99.98 | 98.57 | 99.46 |
Bitumen | 13 | 1317 | 63.63 | 72.59 | 88.23 | 98.56 | 82.38 | 95.67 |
Self-Blocking Bricks | 36 | 3646 | 86.48 | 83.19 | 85.24 | 88.62 | 94.30 | 97.11 |
Shadows | 9 | 938 | 98.83 | 86.99 | 75.69 | 79.64 | 82.73 | 52.35 |
OA | 9 | 938 | 85.46 | 85.4 | 96.16 | 97.08 | 97.04 | 97.31 |
AA | 80.12 | 80.26 | 92.36 | 94.62 | 93.04 | 92.23 | ||
κ | 80.23 | 80.53 | 94.89 | 96.12 | 96.06 | 96.42 |
Method | Indian Pines | University of Pavia | ||
---|---|---|---|---|
Time (s)(Feature Extraction) | Time (s)(Classification) | Time (s)(Feature Extraction) | Time (s)(Classification) | |
SVM | - | 0.94 | - | 0.89 |
KELM | - | 0.23 | - | 0.17 |
Gabor-SVM | 46.83 | 1.02 | 377.04 | 0.93 |
Gabor-KELM | 46.83 | 0.27 | 377.04 | 0.20 |
MH-SVM | 215.40 | 0.91 | 479.78 | 0.85 |
MH-KELM | 215.40 | 0.25 | 479.78 | 0.16 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine. Remote Sens. 2014, 6, 5795-5814. https://doi.org/10.3390/rs6065795
Chen C, Li W, Su H, Liu K. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine. Remote Sensing. 2014; 6(6):5795-5814. https://doi.org/10.3390/rs6065795
Chicago/Turabian StyleChen, Chen, Wei Li, Hongjun Su, and Kui Liu. 2014. "Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine" Remote Sensing 6, no. 6: 5795-5814. https://doi.org/10.3390/rs6065795
APA StyleChen, C., Li, W., Su, H., & Liu, K. (2014). Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine. Remote Sensing, 6(6), 5795-5814. https://doi.org/10.3390/rs6065795