Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data
<p>Illustration of the SMOSMANIA airborne transect, also showing the ground station locations.</p> "> Figure 2
<p>Illustration of the temporal evolution of ground soil moisture, and dates of the airborne measurement 2009 and 2010 campaign.</p> "> Figure 2 Cont.
<p>Illustration of the temporal evolution of ground soil moisture, and dates of the airborne measurement 2009 and 2010 campaign.</p> "> Figure 3
<p>Inter-comparison between estimated volumetric soil moistures and ground measurements over the SMOSMANIA stations: <b>(a)</b> <span class="html-italic">H<sub>r</sub></span> = 0.5; <b>(b)</b> <span class="html-italic">H<sub>r</sub></span> = 1.3 − 1.13 <span class="html-italic">SM</span>.</p> "> Figure 4
<p>Inter-comparison between estimated volumetric soil moistures from the 2010 campaigns, following local roughness calibration and ground measurements (black: SBR, red: CRD, magenta: LHS, green: MNT, yellow: NBN, magenta crosses: hand made <span class="html-italic">in situ</span> measurements).</p> "> Figure 5
<p>Inter-comparison between estimated temporal variations in volumetric soil moisture and ground measurements (here, a simple global linear relationship was established between <span class="html-italic">H<sub>r</sub></span> and <span class="html-italic">SM</span>: <span class="html-italic">H<sub>r</sub></span> = 1.3 − 1.13 <span class="html-italic">SM</span>).</p> "> Figure 6
<p>Variations in the retrieved optical thickness and the MODIS <span class="html-italic">NDVI</span> index as a function of the tree percentage over the studied site as recorded in the Ecoclimap database. The red line shows the corresponding linear regression, with <span class="html-italic">τ<sub>NAD</sub></span> = 0.0474 × NDVI − 0.1702.</p> ">
Abstract
:1. Introduction
2. CAROLS Database
2.1. CAROLS Radiometer
- The radiometer is initially calibrated by means of laboratory measurements: we estimated the CAROLS internal noise source temperature “Ndiode” and cable losses, and validated its stability and accuracy.
- During the flights, automatic calibrations were performed by regularly switching the radiometer, between two antennas and an internal source. The proposed calibration [17] is based on a load target (maintained at a temperature Tload) and an additional signal in the form of a noise source (Ndiode).
- The calibration of antenna losses is validated using the ocean as a target. By choosing an area in which the salinity, temperature and wind speed are well known and stable (basically, far from the coast), we are able to accurately estimate the sea surface brightness temperature.
2.2. CAROLS 2009–2010 Flights
2.3. Studied Site and Ground Measurements
2.4. Auxiliary Data Base
- -
- Ecoclimap database: In order to estimate Tb values along the flight path, it is necessary to compute the soil emissivity, which depends on the soil’s structure and dry bulk density. Clay, sand and loam percentages, together with bulk densities, were extracted from the ECOclimap database [23], which provides samples of these parameters at 1 km intervals.
- -
- The Normalized Difference Vegetation Index (NDVI) from MODIS: Blue, red, and near-infrared reflectances, centred at 469 nm, 645 nm, and 858 nm, respectively, were used to determine the MODIS daily vegetation indices, i.e., the NDVI. We used estimated values, at the 16 day frequency of the AQUA and TERRA satellites, and a resolution of 500 m. Details documenting the MODIS NDVI compositing process and Quality
- -
- Assessment Science Data Sets (QASDS) can be found at NASA’s MODIS web site [24].
3. The L-MEB Model
3.1. Direct Radiative Transfer Model
3.2. Model Inversion
4. Results and Discussions
4.1. Soil Moisture Retrieval with One Roughness L-MEB Default Parameter
4.2. Soil Moisture Retrieval with Local Calibration of the Roughness Parameter
RMSE (m3/m3) | R2 | References | |
---|---|---|---|
Hr = 0.5 | 0.133 | 0.3 | [10] |
Hr = 1.3 − 1.13 SM | 0.08 | 0.68 | [11] |
SMOSMANIA Station | Hr Values |
---|---|
SBR | 1 |
CRD | 0.7 |
LHS | 1.7 |
In situ measurements near to Bordeaux | 1 |
MNT | 1.7 |
NBN | 1.3 |
4.3. Retrieval of Temporal Variations in Soil Moisture
4.4. Estimation of the Optical Thickness of Vegetation
5. Conclusions
Acknowledgements
References
- Pardé, M.; Wigneron, J.-P.; Chanzy, A.; Kerr, Y.; Calvet, J.-C.; Waldteufel, P.; Søbjærg, S.S.; Skou, N. N-parameter retrievals from L-band microwave measurements over a variety of agricultural crops. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1168–1178. [Google Scholar] [CrossRef]
- de Rosnay, P.; Calvet, J.C.; Kerr, Y.; Wigneron, J.P.; Lemaitre, F.; Escorihuela, M.J.; Sabater, J.M.; Saleh, K.; Barrie, J.L.; Bouhours, G.; et al. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens. Environ. 2006, 102, 377–389. [Google Scholar] [CrossRef]
- Grant, J.; Wigneron, J.-P.; Van de Griend, A.A.; Kruszewski, A.; Søbjærg, S.S.; Skou, N. A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness. Remote Sens. Environ. 2007, 109, 10–19. [Google Scholar] [CrossRef]
- Jackson, T.J.; Le Vine, D.M.; Griffis, A.J.; Goodrich, D.C.; Schmugge, T.J.; Swift, C.T.; O’Neill, P.E. Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer. IEEE Trans. Geosci. Remote Sens. 1993, 31, 836–841. [Google Scholar] [CrossRef]
- Saleh, K.; Kerr, Y.; Richaume, P.; Escorihuela, M.-J.; Panciera, R.; Delwart, S.; Boulet, G.; Maisongrande, P.; Walker, J.P.; Wursteisen, P.; Wigneron, J.-P. Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE’05 Experiment). Remote Sens. Environ. 2009, 113, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Wigneron, J.-P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.-J.; Richaume, P.; Ferrazzoli, P.; de Rosnay, P.; Gurney, R.; Calvet, J.-C.; et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 2007, 107, 639–655. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Chanzy, A.; Kerr, Y.; Lawrence, H.; Shi, J.; Escorihuela, M.J.; Mironov, V.; Mialon, A.; Demontoux, F.; de Rosnay, P.; Saleh-Contell, K. Evaluating an improved parameterization of the soil emission in L-MEB. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1177–1189. [Google Scholar] [CrossRef]
- Panciera, R.; Walker, J.P.; Kalma, J.D.; Kim, E.J.; Saleh, K.; Wigneron, J.-P. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens. Environ. 2009, 113, 435–444. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Wigneron, J.P.; Wandteufel, P. Consequences of surface heterogeneity for parameter retrieval from 1.4 GHz multiangle SMOS observations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 803–811. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Parde, M.; Waldteufel, P.; Chanzy, A.; Kerr, Y.; Schmidl, S.; Skou, N. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band. IEEE Trans. Geosci. Remote Sens. 2004, 42, 416–425. [Google Scholar] [CrossRef]
- Saleh, K.; Wigneron, J.-P.; Waldteufel, P.; de Rosnay, P.; Schwank, M.; Calvet, J.-C.; Kerr, Y.H. Estimates of surface soil moisture under grass covers using L-band radiometry. Remote Sens. Environ. 2007, 109, 42–53. [Google Scholar] [CrossRef]
- Grant, J.P.; Saleh-Contell, K.; Wigneron, J.-P.; Guglielmetti, M.; Kerr, Y.H.; Schwank, M.; Skou, N.; Van de Griend, A.A. Calibration of the L-MEB Model over a coniferous and a deciduous forest. IEEE Trans. Geosci. Remote Sens. 2008, 46, 808–818. [Google Scholar] [CrossRef]
- Escorihuela, M.-J.; Kerr, Y.; de Rosnay, P.; Wigneron, J.-P.; Calvet, J.-C.; Lemaitre, F. A simple model of the bare soil microwave emission at L-band. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1978–1987. [Google Scholar] [CrossRef]
- Escorihuela, M.-J.; Chanzy, A.; Wigneron, J.-P.; Kerr, Y. Effective soil moisture depth of L-band radiometry: A case study. Remote Sens. Environ. 2010, 114, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.C.; Chen, K.S.; Li, Q.; Jackson, T.J.; O’Neill, P.E.; Tsang, L. A parameterized surface reflectivity model and estimation of bare surface soil moisture with L-band radiometer. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2674–2686. [Google Scholar]
- Wigneron, J.-P.; Laguerre, L.; Kerr, Y. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [Google Scholar] [CrossRef]
- Zribi, M.; Pardé, M.; Boutin, J.; Fanise, P.; Hauser, D.; Dechambre, M.; Kerr, Y.; Leduc-Leballeur, M.; Reverdin, G.; Skou, N.; et al. CAROLS: A new airborne L-band radiometer for ocean surface and land observations. Sensors 2011, 11, 719–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albergel, C.; Zakharova, E.; Calvet, J.-C.; Zribi, M.; Pardé, M.; Wigneron, J.-P.; Novello, N.; Kerr, Y.; Mialon, A.; Fritz, N.E.-D. A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign. Remote Sens. Environ. 2011. accepted. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Boutin, J.; Hauser, D.; Reverdin, G.; Pardé, M.; Zribi, M.; Fanise, P.; Chanut, J.; Lazure, P.; Tenerelli, J.; Reul, N. Remote Sensing of sea surface salinity from CAROLS L-band radiometer in the Gulf of Biscay. IEEE Trans. Geosci. Remote Sens. 2011, 115, 2718–2728. [Google Scholar] [CrossRef]
- Pardé, M.; Zribi, M.; Fanise, P.; Dechambre, M. CAROLS L-band radiometer airborn campaign: Analysis of RFI issue. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1063–1070. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B. In situ Soil Moisture Observations for the CAL/VAL of SMOS: The SMOSMANIA Network. In Proceedings of International Geoscience and Remote Sensing Symposium, IGARSS2007, Barcelona, Spain, 23–27 July 2007.
- Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Climate 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- MODIS Vegetation Index (MOD 13): Algorithm Theoretical Basis Document; Version 3; 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 14 November 2011).
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil—Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Wang, J.R.; Choudhury, B.J. Remote sensing of soil moisture content over bare field at 1.4 GHz frequency. J. Geophys. Res. 1981, 86, 5277–5282. [Google Scholar] [CrossRef]
- Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardé, M.; Zribi, M.; Wigneron, J.-P.; Dechambre, M.; Fanise, P.; Kerr, Y.; Crapeau, M.; Saleh, K.; Calvet, J.-C.; Albergel, C.; et al. Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data. Remote Sens. 2011, 3, 2591-2604. https://doi.org/10.3390/rs3122591
Pardé M, Zribi M, Wigneron J-P, Dechambre M, Fanise P, Kerr Y, Crapeau M, Saleh K, Calvet J-C, Albergel C, et al. Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data. Remote Sensing. 2011; 3(12):2591-2604. https://doi.org/10.3390/rs3122591
Chicago/Turabian StylePardé, Mickaël, Mehrez Zribi, Jean-Pierre Wigneron, Monique Dechambre, Pascal Fanise, Yann Kerr, Marc Crapeau, Kauzar Saleh, Jean-Christophe Calvet, Clément Albergel, and et al. 2011. "Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data" Remote Sensing 3, no. 12: 2591-2604. https://doi.org/10.3390/rs3122591