Estimating Global Cropland Extent with Multi-year MODIS Data
"> Figure 1
<p>Comparison of country/regional estimates of cropland extent derived from a single global matching threshold versus per country matching thresholds.</p> "> Figure 2
<p>Comparison of cropland extent derived from a single global matching threshold versus per country matching thresholds where red equals global/national cropland (>=43%), orange equals global/not national cropland (>=43%), green equals not global/national cropland (<43%), and blue equals not global/not national cropland (>0% and <43%). Black equals no indicated cropland.</p> "> Figure 3
<p>Global MODIS 250 m cropland product based on per country matching thresholds. Final cropland extent is shown in red, with probability values outside of final mask shown in green.</p> "> Figure 4
<p>Agreement amongst five heritage cropland data sets, where red equals 5 out of 5 agreement, orange equals 4 out 5, green 3 out of 5, cyan 2 out of 5, and blue 1 out of 5. Each zone of agreement was converted to a mask for intercomparison with the MODIS 250 m cropland layer.</p> "> Figure 5
<p>Modeled matching user’s and producer’s accuracies (percent agreement axis) for regions of common agreement amongst five heritage cropland data layers (ancillary map agreement axis). Only the data points for the USA are shown to illustrate the variation of commission and omission errors. Each data point has the probability threshold value independently derived using the FAS PSD database to create the MODIS 250 m cropland layer.</p> "> Figure 6
<p>For (a) U.S. Corn Belt, (c) Argentina/Uruguay/Brazil, (e), North China Plain, and (g) Pakistan/India/China, agreement amongst five heritage cropland data sets, where red equals 5 out of 5 agreement, orange equals 4 out 5, green 3 out of 5, cyan 2 out of 5, and blue 1 out of 5. For the same respective regions in (b), (d), (f), (h), MODIS 250 m global cropland product based on per country matching thresholds. Final cropland extent is shown in red, with probability values outside of final mask shown in green. Each subset is 1,843 km by 1,843 km in size.</p> "> Figure 6 Cont.
<p>For (a) U.S. Corn Belt, (c) Argentina/Uruguay/Brazil, (e), North China Plain, and (g) Pakistan/India/China, agreement amongst five heritage cropland data sets, where red equals 5 out of 5 agreement, orange equals 4 out 5, green 3 out of 5, cyan 2 out of 5, and blue 1 out of 5. For the same respective regions in (b), (d), (f), (h), MODIS 250 m global cropland product based on per country matching thresholds. Final cropland extent is shown in red, with probability values outside of final mask shown in green. Each subset is 1,843 km by 1,843 km in size.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Training Data
2.2. MODIS Data
Mean of the 3 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 3 warmest composites |
Mean of channel 1 (red) in 3 greenest composites |
Mean of the 3 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 3 warmest composites |
Mean of channel 2 (NIR) in 3 greenest composites |
Mean of the 3 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 3 greenest composites |
Mean of the 3 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 3 warmest composites |
Mean of channel 7 (SWIR) in 3 greenest composites |
Mean of the 3 greenest (NDVI) composites |
Mean of NDVI in 3 warmest composites |
Mean of the 6 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 6 warmest composites |
Mean of channel 1 (red) in 6 greenest composites |
Mean of the 6 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 6 warmest composites |
Mean of channel 2 (NIR) in 6 greenest composites |
Mean of the 6 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 6 greenest composites |
Mean of the 6 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 6 warmest composites |
Mean of channel 7 (SWIR) in 6 greenest composites |
Mean of the 6 greenest (NDVI) composites |
Mean of NDVI in 6 warmest composites |
Mean of the 12 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 12 warmest composites |
Mean of channel 1 (red) in 12 greenest composites |
Mean of the 12 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 12 warmest composites |
Mean of channel 2 (NIR) in 12 greenest composites |
Mean of the 12 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 12 greenest composites |
Mean of the 12 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 12 warmest composites |
Mean of channel 7 (SWIR) in 12 greenest composites |
Mean of the 12 greenest (NDVI) composites |
Mean of NDVI in 12 warmest composites |
2.3. Classification Tree Algorithm
2.4. Thresholds
Country | FAO Area | FAS Area | % Diff | FAS Threshold | FAO Threshold |
---|---|---|---|---|---|
Argentina | 25,456,125 | 26,711,333 | 4.7% | 42 | 44 |
Bangladesh | 7,996,000 | 12,009,556 | 33.4% | 1 | 10 |
Vietnam | 6,444,438 | 8,815,444 | 26.9% | 12 | 15 |
Philippines | 4,942,625 | 6,745,667 | 26.7% | 10 | 13 |
Egypt | 2,937,875 | 3,294,222 | 10.8% | 16 | 22 |
Nepal | 2,345,625 | 3,335,556 | 29.7% | 14 | 21 |
Turkmenistan | 1,790,000 | 1,979,778 | 9.6% | 51 | 54 |
Tajikistan | 765,750 | 884,111 | 13.4% | 68 | 71 |
2.5 Evaluation
3. Results and Discussion
MODIS Band | As primary metric | As primary or secondary metric |
---|---|---|
Band 1 (Red) | 26.41 | 26.41 |
Band 2 (NIR) | 16.89 | 16.89 |
Band 7 (SWIR) | 9.92 | 9.92 |
NDVI | 31.54 | 53.40 |
Band 31 (Thermal) | 15.24 | 54.82 |
Region Country/Regions | Matching Threshold | Calculated Area (hectares) | FAS PSD Area (hectares) |
---|---|---|---|
India | 35 | 139,841,931 | 138,331,222 |
China | 41 | 113,216,074 | 114,264,444 |
United States | 49 | 100,291,610 | 97,792,333 |
Russia | 43 | 49,301,727 | 48,396,333 |
Brazil | 37 | 41,099,217 | 41,453,222 |
Argentina | 42 | 26,882,240 | 26,711,333 |
Canada | 64 | 22,501,593 | 22,627,556 |
Australia | 75 | 20,308,184 | 20,363,000 |
Africa | 30 | 112,756,008 | 110,901,444 |
Europe | 63 | 92,203,407 | 92,959,111 |
Central Asia | 47 | 78,435,859 | 77,582,777 |
South / East Asia | 20 | 76,919,435 | 77,462,666 |
Latin America | 38 | 24,002,450 | 25,023,444 |
Corn | Rice | Soybeans | Wheat |
---|---|---|---|
Angola | Bangladesh | Argentina | Afghanistan |
Benin | Burma | Bolivia | Algeria |
Brazil | Cambodia | Brazil | Australia |
Colombia | China | Paraguay | Canada |
Congo (Kinshasa) | Colombia | United States | European Union |
Cote d’Ivoire | Guinea | Egypt | |
Ethiopia | India | Iran | |
Ghana | Indonesia | Iraq | |
Kenya | Japan | Kazakhstan | |
North Korea | North Korea | Moldova | |
Malawi | Madagascar | Morocco | |
Mexico | Nepal | Pakistan | |
Moldova | Peru | Russia | |
Mozambique | Philippines | Syria | |
Nepal | Thailand | Tunisia | |
Peru | Vietnam | Turkey | |
Philippines | South Korea | Turkmenistan | |
Serbia | Ukraine | ||
South Africa | Uzbekistan | ||
Tanzania | |||
Togo | |||
Uganda | |||
United States | |||
Zambia | |||
Zimbabwe |
Level of Agreement | Corn | Rice | Soybeans | Wheat |
---|---|---|---|---|
5 of 5 | 85.89 | 58.02 | 86.75 | 62.65 |
At Least 4 of 5 | 66.93 | 46.58 | 69.24 | 55.52 |
At Least 3 of 5 | 50.57 | 40.50 | 55.51 | 49.65 |
At Least 2 of 5 | 33.10 | 34.22 | 41.70 | 42.92 |
At Least 1 of 5 | 19.91 | 25.26 | 27.50 | 32.78 |
Level of Agreement | Rice | Wheat |
---|---|---|
5 of 5 | 20.84 | 73.79 |
At Least 4 of 5 | 19.93 | 57.19 |
At Least 3 of 5 | 15.69 | 41.84 |
At Least 2 of 5 | 10.49 | 26.25 |
At Least 1 of 5 | 4.90 | 10.29 |
4. Conclusion
Acknowledgements
List of Abbreviations:
MODIS | MODerate Resolution Imaging Spectroradiometer |
USDA | United States Department of Agriculture |
CADRE | Crop Condition Data Retrieval and Evaluation |
LACIE | Large Area Crop Inventory Experiment |
AgRISTARS | Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing |
GLAM | Global Agriculture Monitoring project |
UNFAO | United Nations Food and Agricultural Organization |
GIEWS | Food Security Global Information and Early Warning System |
USAID | United States Agency for International Development |
FEWS | Famine Early Warning System |
MARS | Monitoring Agriculture with Remote Sensing |
GMFS | Global Monitoring of Food Security |
IRSA | Institute of Remote Sensing Applications |
IWMI | International Water Management Institute |
References
- Boatwright, G.O.; Whitehead, V.S. Early warning and crop condition assessment research. IEEE Trans. Geosci. Remote Sens. 1986, 24, 54–64. [Google Scholar] [CrossRef]
- Group on Earth Observations. Report from the Workshop on Developing a Strategy for Global Agricultural Monitoring in the framework of Group on Earth Observations (GEO), 16-18 July 2007, FAO, Rome; GEO: Geneva, Switzerland, 2007. [Google Scholar]
- National Agricultural Statistics Service. Cropland Data Layer; USDA-NASS: Washington, DC, USA, 2010; Available online: www.nass.usda.gov/research/Cropland/SARS1a.htm (accessed on 6 January 2010).
- Wolfe, R.; Roy, D.; Vermote, E. The MODIS land data storage, gridding and compositing methodology: L2 Grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanre, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. 1997, 102, 17131–17141. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Characterizing patterns of global land use: An analysis of global croplands data. Glob. Biogeochem. Cycles 1998, 12, 667–685. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the Planet: Geographic distribution of global agriculture in the year 2000. Glob. Biogeochem. Cycles 2008, 22, B1003. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D. K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; Baccini, A.; Gao, F.; Schaaf, C. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Leroy, M.; Ranera, F.; Gross, D.; Bicheron, P.; Nino, F.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L.; Bourg, L.; Latham, J.; Di Gregorio, A.; Witt, R.; Herold, M.; Sambale, J.; Plummer, S.; Weber, J.-L.; Goryl, P.; Houghton, N. GlobCover—A global land cover service with MERIS. In Proceedings of ‘Envisat Symposium 2007’, Montreux, Switzerland, April 2007.
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Reddy, G.P.O.; Turral, H.; Cai, X.L.; Vithanage, J.; Schull, M.; Dutta, R. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Chandrashekhar, M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.B.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; Gunasinghe, S.; Mohideen, S. A global map of rainfed cropland areas (GMRCA) at the end of the last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114–129. [Google Scholar]
- Tucker, C.J.; Grant, D.; Dykstra, J. NASA’s global orthorectified Landsat data set. Photogramm. Eng. Remote Sensing 2004, 70, 313–322. [Google Scholar] [CrossRef]
- Africover. Land Cover Mapping Based on Satellite Remote Sensing; Food and Agriculture Organization of the United Nations: Roma, Italy, 2002; Available online: http://www.africover.org/download/documents/Short_Project_description_en.pdf (accessed on 1 March 2010).
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sensing 2007, 73, 337–341. [Google Scholar]
- Fisette, T.; Chenier, R.; Maloley, M.; Gasser, PY.; Huffman, T.; White, L.; Ogston, R.; Elgarawany, A. Methodology for a Canadian agricultural land cover classification. In Proceedings of 1st International Conference on Object-based Image Analysis, Salzburg, Austria, July 2006; In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2006; Volume XXXVI 4/C42. [Google Scholar]
- Fairbanks, D.H.K.; Thompson, M.W.; Vink, D.E.; Newby, T.S.; van den Berg, H.M.; Everard, D.A. The South African land-cover characteristics database: a synopsis of the landscape. South Afr. J. Sci. 2000, 96, 69–82. [Google Scholar]
- Buttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The CORINE Land Cover 2000 Project. EARSeL eProceedings 2004, 3, 331–346. [Google Scholar]
- Vermote, E.F.; El Saleous, N.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R.; Wurster, K. Vegetative cover conversion and vegetation continuous Fields. In Land Remote Sensing and Global Environmental Change; NASA’s Earth Observing System and the Science of ASTER and MODIS Series; Ramachandran, B., Justice, C.O., Abrams, M., Eds.; Springer-Verlag: New York, NY, USA, 2010. [Google Scholar]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interactions 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-Plus; Springer-Verlag: New York, NY, USA, 1994. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Reynolds, C.A. Input Data Sources, Climate Normals, Crop Models, and Data Extraction Routines Utilized by PECAD; USDA: Washington, DC, USA, 2001; Available online: www.pecad.fas.usda.gov/cropexplorer/datasources.cfm (accessed on 14 October 2009).
- FAOSTAT. FAO Statistical Databases; Food and Agricultural Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global rater water mask at 250m resolution. Int. J. Dig. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; Zaslavsky, I. From spatial continuity to fragmentation: The case of Russian farming. Ann. Assoc. Amer. Geographers 2004, 94, 913–943. [Google Scholar]
- ROSSTAT. Regions of Russia: Social and Economic Indicators; Russian Federal State Statistics Service: Moscow, Russian, 2008. [Google Scholar]
- Becker-Reshef, I.; Justice, C.O.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masouka, E.; Schmaltz, J.; Hansen, M.; Pittman, K.; Birkett, C.; Willians, D.; Reynolds, C.; Doorn, B. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sensing 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sens. 2010, 2, 1844-1863. https://doi.org/10.3390/rs2071844
Pittman K, Hansen MC, Becker-Reshef I, Potapov PV, Justice CO. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensing. 2010; 2(7):1844-1863. https://doi.org/10.3390/rs2071844
Chicago/Turabian StylePittman, Kyle, Matthew C. Hansen, Inbal Becker-Reshef, Peter V. Potapov, and Christopher O. Justice. 2010. "Estimating Global Cropland Extent with Multi-year MODIS Data" Remote Sensing 2, no. 7: 1844-1863. https://doi.org/10.3390/rs2071844
APA StylePittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensing, 2(7), 1844-1863. https://doi.org/10.3390/rs2071844