Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover
<p>Cummulative daily Temperature Coefficients (TC), daily Moisture Coefficients (MC), Decomposition Days (DD) for dry and wet treatments as functions of calendar days from start of the experiment on August 1, 2006. The inverted blue triangles joined a blue line indicate days when irrigation was applied. Solid red triangles indicate sampling dates.</p> "> Figure 2
<p>Changes in initial wheat straw mass as a function of decomposition days (DD). A single exponential decay function fit both dry and wet treatments.</p> "> Figure 3
<p>Changes in the (a) concentrations and (b) initial mass of the structural components of wheat straw as a function of decomposition days (DD). The root mean square error (RSME) of the regression line for each component, except NDF, is smaller than the symbol size. For NDF, the RMSE is 1.3 times the symbol size.</p> "> Figure 4
<p>Spectral reflectance of wheat straw at selected decomposition days (DD). The spectra are displaced vertically to avoid overlap. Reflectance at 1,300 nm is provided for each spectrum.</p> "> Figure 5
<p>Correlograms of wheat straw components and reflectance spectra. Dotted vertical lines are at 1,710, 2,100, and 2,310 nm.</p> "> Figure 6
<p>Reflectance spectra of three diverse soils: Loring (Alfisol), Sverdrup (Mollisol), and Gaston (Ultisol).</p> "> Figure 7
<p>Reflectance spectra of simulated scenes with mixtures of two wheat residues (DD = 0 and DD = 165) on three soils. The fraction residue cover (f<sub>R</sub>) ranged from 0 (100% soil) to 1.0 (100% wheat residue).</p> "> Figure 8
<p>Expected responses of Landsat TM band residue indices (Equations 2–6) to changes in residue cover for scenes with mixtures of four ages (<span class="html-italic">i.e.</span>, decomposition days, DD) of wheat residues and three soils.</p> "> Figure 9
<p>Expected responses of advanced residue indices (Equations 7–9) to changes in residue cover for scenes with mixtures of four ages (<span class="html-italic">i.e.</span>, decomposition days, DD) of wheat residues and three soils.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Reflectance Measurements
2.3. Fiber Analyses
2.4. Data Analysis
2.4.1. Decomposition Days
2.4.2. Statistical Analyses
3. Results and Discussion
Soil | Residue Age | NDTI | NDI7 | NDI5 | NDSVI | CAI | LCA | SINDRI | |
---|---|---|---|---|---|---|---|---|---|
Loring | DD = 0 | Rangea | 0.174 | 0.137 | −0.039 | 0.087 | 15.9 | 4.8 | 6.2 |
DD = 79 | Range | 0.118 | −0.024 | −0.136 | 0.216 | 12.9 | 4.1 | 5.0 | |
Changeb | −0.325 | −1.177 | 2.457 | 1.483 | −0.188 | −0.152 | −0.196 | ||
Sverdrup | DD = 0 | Range | 0.193 | 0.401 | 0.204 | −0.233 | 13.9 | 4.0 | 5.7 |
DD = 79 | Range | 0.136 | 0.240 | 0.107 | −0.104 | 10.9 | 3.2 | 4.4 | |
Change | −0.294 | −0.401 | −0.474 | −0.554 | −0.214 | −0.184 | −0.214 | ||
Gaston | DD = 0 | Range | 0.090 | 0.007 | −0.083 | 0.155 | 19.6 | 4.3 | 7.5 |
DD = 79 | Range | 0.033 | −0.154 | −0.180 | 0.285 | 16.6 | 3.6 | 6.3 | |
Change | −0.632 | −23.221 | 1.160 | 0.831 | −0.152 | −0.168 | −0.162 |
4. Conclusions
Acknowledgements
References
- Lal, R.; Kimble, J.M.; Follett, R.F.; Cole, C.V. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect; Lewis Publishers: Boca Raton, FL, USA, 1999; p. 128. [Google Scholar]
- Lobb, D.A.; Huffman, E.; Reicosky, D.C. Importance of information on tillage practices in the modeling of environmental processes and in the use of environmental indicators. J. Environ. Manage. 2007, 82, 377–387. [Google Scholar]
- Rasmussen, P.E.; Rohde, C.R. Long-term tillage and nitrogen fertilization effects on organic N and C in a semi-arid soil. Soil Sci. Soc. Am. J. 1988, 44, 596–600. [Google Scholar] [CrossRef]
- Melillo, J.M.; Aber, J.D.; Linkins, A.E.; Ricca, A.; Fry, B.; Nadelhoffer, K.J. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 1989, 11, 189–198. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 2nd ed.; Springer-Verlag: Berlin, Germany, 2008; p. 338. [Google Scholar]
- Stroo, H.F.; Bristow, K.L.; Elliott, L.F.; Papendick, R.I.; Campbell, G.S. Predicting rates of wheat residue decomposition. Soil Sci. Soc. Am. J. 1989, 53, 91–99. [Google Scholar] [CrossRef]
- Steiner, J.L.; Schomberg, H.H.; Douglas, C.L., Jr.; Black, A.L. Standing stem persistence in no-tillage small-grain fields. Agron. J. 1994, 86, 76–81. [Google Scholar]
- Steiner, J.L.; Schomberg, H.H.; Unger, P.W.; Cresap, J. Crop residue decomposition in no-tillage small-grain fields. Soil Sci. Soc. Am. J. 1999, 63, 1817–1824. [Google Scholar] [CrossRef]
- CTIC. Crop Residue Management Survey System; Conservation Technology Information Center: West Lafayette, IN, USA, 2009; Available online: http://www.crmsurvey.org/ (accessed on 26 January 2010).
- Laflen, J.M.; Amemiya, M.; Hintz, E.A. Measuring crop residue cover. J. Soil Water Conserv. 1981, 36, 341–343. [Google Scholar]
- Morrison, J.E., Jr.; Huang, C.; Lightle, D.T.; Daughtry, C.S.T. Residue cover measurement techniques. J. Soil Water Conserv. 1993, 48, 479–483. [Google Scholar]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E. Evaluation of optical remote sensing models for crop residue cover assessment. J. Soil Water Conserv. 2004, 59, 224–233. [Google Scholar]
- Streck, N.A.; Rundquist, D.; Connot, J. Estimating residual wheat dry matter from remote sensing measurements. Photogramm. Eng. Remote Sens. 2002, 68, 1193–1201. [Google Scholar]
- Bauer, M.E. Spectral inputs to crop identification and condition assessment. Proc. IEEE 1985, 73, 1071–1085. [Google Scholar] [CrossRef]
- MacDonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Baird, F.; Baret, F. Crop residue estimation using multiband reflectance. Remote Sens. Environ. 1997, 59, 530–536. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R., Jr.; Brown, D.J. Effect of soil on remote sensing of crop residue cover. Soil Sci. Soc. Am. J. 2009, 73, 1545–1558. [Google Scholar] [CrossRef]
- Corak, S.J.; Kaspar, T.C.; Meek, D.W. Evaluating methods for measuring residue cover. J. Soil Water Conserv. 1993, 48, 700–704. [Google Scholar]
- McNairn, H.; Protz, R. Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Heilman, P.; Biedenbender, S.; Biedenbender, S.; Moran, M.S.; Goodrich, D.C.; Weltz, M. RANGES improves satellite-based information and land cover assessments in Southwest United States. EOS Trans. Am. Geophys. Union 2002, 83, 601–606. [Google Scholar] [CrossRef]
- van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2008; p. 332. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens. Environ. 2001, 76, 349–359. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing camopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R., Jr.; McMurtrey, J.E., III. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R., Jr. Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover. Remote Sens. Environ. 2008, 112, 1647–1657. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E., III. Remote sensing the spatial distribution of crop residues. Agron. J. 2005, 97, 864–871. [Google Scholar] [CrossRef]
- Serbin, G.; Hunt, E.R., Jr.; Daughtry, C.S.T.; Doraiswamy, P.C. An improved ASTER index for remote sensing of crop residue. Remote Sens. 2009, 1, 971–991. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Doraiswamy, P.C.; Hunt, E.R., Jr.; Stern, A.J.; McMurtrey, J.E., III; Prueger, J.H. Assessing crop residue cover and soil tillage intensity. Soil Tillage Res. 2006, 91, 101–108. [Google Scholar] [CrossRef]
- Robinson, B.F.; Biehl, L.L. Calibration procedures for measurements of reflectance factor in remote sensing field research. Proc. Soc. Photo-Optical Instrum. Eng. SPIE 1979, 196, 16–26. [Google Scholar]
- Abrams, M. ASTER: data products for the high spatial resolution imager on NASA's EOS-AM1 platform. Int. J. Remote Sens. 2000, 21, 847–861. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis. USDA Agricultural Handbook 379; US Government Printing Office: Washington, DC, WA, USA, 1970. [Google Scholar]
- Ankom Technology. Available online: http://www.ankom.com/09_procedures/procedures.shtml (accessed on 26 January 2010).
- Schreiber, J.D. Leaching of nitrogen, phosphorous, and organic carbon form wheat straw residues: II. Loading rate. J. Environ. Qual. 1985, 14, 256–260. [Google Scholar] [CrossRef]
- SAS/STAT User’s Guide. Version 9.2; SAS Institute: Cary, NC, USA, 2008.
- Norman, R.C.; Coblentz, W.K.; Hubbell, D.S., III; Ogden, R.K.; Coffey, K.P.; Caldwell, J.D.; Rhein, R.T.; West, C.P.; Rosenkrans, C.F., Jr. Effects of storage conditions on the forage quality characteristics and ergovaline content of endophyte-infected Tall Fescue hays. Crop Sci. 2007, 47, 1635–1646. [Google Scholar]
- Berg, B.; Hannus, K.; Popoff, T.; Theander, O. Changes in the organic-chemical components during decomposition: long-term decomposition in a Scots pine forest. Can. J. Bot. 1982, 60, 1310–1319. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Daughtry, C.S.T.; Serbin, G.; Reeves, J.B., III; Doraiswamy, P.C.; Hunt, E.R., Jr. Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sens. 2010, 2, 416-431. https://doi.org/10.3390/rs2020416
Daughtry CST, Serbin G, Reeves JB III, Doraiswamy PC, Hunt ER Jr. Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sensing. 2010; 2(2):416-431. https://doi.org/10.3390/rs2020416
Chicago/Turabian StyleDaughtry, Craig S. T., Guy Serbin, James B. Reeves, III, Paul C. Doraiswamy, and Earle Raymond Hunt, Jr. 2010. "Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover" Remote Sensing 2, no. 2: 416-431. https://doi.org/10.3390/rs2020416
APA StyleDaughtry, C. S. T., Serbin, G., Reeves, J. B., III, Doraiswamy, P. C., & Hunt, E. R., Jr. (2010). Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sensing, 2(2), 416-431. https://doi.org/10.3390/rs2020416