The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events
<p>Study area. The region covered in this study includes the entire territory of China. The green dots represent air quality monitoring stations.</p> "> Figure 2
<p>Performance of the TOAR data estimation model. The dark dotted line represents the error line, the light dotted line represents the 1:1 line, and the solid red line represents the linear regression fitting line.</p> "> Figure 3
<p>Full coverage TOAR: particulate matter estimation model based on sample cross-validation results. The dark dotted line represents the error line, the light dotted line represents the 1:1 line, and the solid red line represents the linear regression fitting line.</p> "> Figure 4
<p>Full coverage TOAR: particulate matter estimation model based on spatial validation results. The dark dotted line represents the error line, the light dotted line represents the 1:1 line, and the solid red line represents the linear regression fitting line.</p> "> Figure 5
<p>The annual average distribution of the particulate matter estimation results.</p> "> Figure 6
<p>Spatial distribution of PM<sub>10</sub> and PM<sub>2.5</sub> concentrations during the development of the dust storm event. (<b>Left</b>) Distribution of PM<sub>10</sub> concentrations. (<b>Right</b>) Distribution of PM<sub>2.5</sub> concentrations.</p> "> Figure 7
<p>Interpretation of the dust transport model for ΔPM<sub>10</sub> and ΔPM<sub>2.5</sub>.The solid red line represents the linear regression fitting line.</p> "> Figure 8
<p>SHAP importance scores of variables impacting ΔPM<sub>10</sub> and ΔPM<sub>2.5</sub> during dust storm processes. The variables shown in the figure include the following: lat: latitude, lon: longitude, height: air mass height, pressures: the air pressure at the height of the air mass, TM: temperatures, SP: surface pressures, WS: wind speeds, RH: relative humidities, BLH: boundary layer heights, SOR: surface solar radiation, LUCC: land use and land cover, HEIGHT: altitude, and RK: population density.</p> "> Figure 9
<p>Distribution of PM<sub>2.5</sub> and PM<sub>10</sub> concentrations during the development of the haze event. <b>Left</b>: Distribution of PM<sub>10</sub> concentrations. <b>Right</b>: Distribution of PM<sub>2.5</sub> concentrations.</p> "> Figure 10
<p>SHAP importance scores of various variables affecting ΔPM<sub>10</sub> and ΔPM<sub>2.5</sub> during haze weather.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. FY-4A and FY-4B TOAR Data
2.2. Particle Observation Data, Meteorological Factors, and Geographic Information
2.3. Data-Matching Method
2.4. Machine Learning Model
2.4.1. TOAR Filling Method Model
2.4.2. TOAR-Particulate Matter Estimation Model
2.4.3. Model Validation Metrics
2.5. HYSPLIT Model
2.6. Meteorological Normalization Method
2.7. SHAP Analysis Method
3. Model Performance
3.1. Performance of the TOAR Filling Method Using the ET Model
3.2. Performance Comparison of Original TOAR and Estimated TOAR in Constructing Particulate Matter Estimation ET Models
3.3. Spatial Distribution of Particulate Matter Estimation Results
4. Interpretable Machine Learning Analysis of Particulate Matter Pollution Events
4.1. Influence of Meteorological Factors on Dust Transport Processes
4.2. Influence of Meteorological Factors in Haze Weather Event
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zeng, L.; Wang, H.; Wang, P.; Liao, H. Dust pollution in China affected by different spatial and temporal types of El Niño. Atmos. Chem. Phys. 2022, 22, 14489–14502. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, H.; Lou, S. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos. 2016, 121, 13050–13065. [Google Scholar] [CrossRef]
- Crouse, D.L.; Peters, P.A.; Donkelaar, A.v.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Cui, J.; Wu, D.; Shi, T.; Chen, Y.; Xing, Y.; Zhou, Y.; Wang, X. Unprecedented snow darkening and melting in New Zealand due to 2019–2020 Australian wildfires. Fundam. Res. 2021, 1, 224–231. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Li, K.; Wang, H.; Ren, L.; Zeng, L.; Li, H.; Wang, P.; Li, B.; Liao, H. Atmospheric Circulation Patterns Conducive to Severe Haze in Eastern China Have Shifted Under Climate Change. Geophys. Res. Lett. 2021, 48, e2021GL095011. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, L.; Li, H.; Wang, H.; Wang, P.; Chen, L.; Yue, X.; Liao, H. Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic. Geophys. Res. Lett. 2020, 47, e2020GL089788. [Google Scholar] [CrossRef]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Han, Y.; Liu, W.; Wang, R.; Zhang, R.; Zhao, Z.; Sheng, L.; Zhou, Y. Impact of COVID-19 emission reduction on dust aerosols and marine chlorophyll-a concentration. Sci. Total Environ. 2024, 918, 170493. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xia, F.; Zhang, Y.; Liu, H.; Li, J.; Lou, M.; He, J.; Yan, Y.; Wang, F.; Min, M.; et al. Impact of diurnal variability and meteorological factors on the PM2.5—AOD relationship: Implications for PM2.5 remote sensing. Environ. Pollut. 2017, 221, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tong, B.; Russell, L.M.; Wei, J.; Guo, J.; Mao, F.; Liu, D.; Huang, Z.; Xie, Y.; Qi, B.; et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate. Remote Sens. Environ. 2022, 281, 113224. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Yu, F.; Jia, H.; Hu, Y. Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? Atmos. Res. 2016, 181, 250–256. [Google Scholar] [CrossRef]
- Yao, F.; Si, M.; Li, W.; Wu, J. A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Sci. Total Environ. 2018, 618, 819–828. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Pan, X.; Zhang, L.; Chen, D. Estimating PM2.5 in Xi’an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models. Sci. Total Environ. 2015, 505, 1156–1165. [Google Scholar] [CrossRef]
- Ye, H.; Pan, X.; You, W.; Zhu, X.; Zang, Z.; Wang, D.; Zhang, X.; Hu, Y.; Jin, S. Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model. Atmos. Res. 2021, 264, 105877. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Bai, K.; Wei, Y.; Xie, Y.; Zhang, Y.; Ou, Y.; Cohen, J.; Zhang, Y.; Peng, Z.; et al. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundam. Res. 2021, 1, 240–258. [Google Scholar] [CrossRef]
- Chen, B.; Song, Z.; Pan, F.; Huang, Y. Obtaining vertical distribution of PM2.5 from CALIOP data and machine learning algorithms. Sci. Total Environ. 2022, 805, 150338. [Google Scholar] [CrossRef]
- Vu, B.N.; Bi, J.; Wang, W.; Huff, A.; Kondragunta, S.; Liu, Y. Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California. Remote Sens. Environ. 2022, 271, 112890. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Liu, Z.; Wang, X.; Bresch, J.; Ban, J.; Chen, D.; Kim, J. Assimilating AOD retrievals from GOCI and VIIRS to forecast surface PM2.5 episodes over Eastern China. Atmos. Environ. 2018, 179, 288–304. [Google Scholar] [CrossRef]
- Song, Z.; Chen, B.; Huang, J. Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China. Environ. Pollut. 2022, 297, 118826. [Google Scholar] [CrossRef]
- Chen, B.; Song, Z.; Shi, B.; Li, M. An interpretable deep forest model for estimating hourly PM10 concentration in China using Himawari-8 data. Atmos. Environ. 2022, 268, 118827. [Google Scholar] [CrossRef]
- Tang, B.; Stanier, C.O.; Carmichael, G.R.; Gao, M. Ozone, nitrogen dioxide, and PM2.5 estimation from observation-model machine learning fusion over S. Korea: Influence of observation density, chemical transport model resolution, and geostationary remotely sensed AOD. Atmos. Environ. 2024, 331, 120603. [Google Scholar] [CrossRef]
- Thongsame, W.; Henze, D.K.; Kumar, R.; Barth, M.; Pfister, G. Evaluation of WRF-Chem PM2.5 simulations in Thailand with different anthropogenic and biomass-burning emissions. Atmos. Environ. X 2024, 23, 100282. [Google Scholar] [CrossRef]
- Yang, C.; Guan, L.; Sun, X. Comparison of FY-4A/AGRI SST with Himawari-8/AHI and In Situ SST. Remote Sens. 2023, 15, 4139. [Google Scholar] [CrossRef]
- Wang, W.; Mao, F.; Pan, Z.; Gong, W.; Yoshida, M.; Zou, B.; Ma, H. Evaluating Aerosol Optical Depth From Himawari-8 With Sun Photometer Network. J. Geophys. Res. Atmos. 2019, 124, 5516–5538. [Google Scholar] [CrossRef]
- Yin, J.; Mao, F.; Zang, L.; Chen, J.; Lu, X.; Hong, J. Retrieving PM2.5 with high spatio-temporal coverage by TOA reflectance of Himawari-8. Atmos. Pollut. Res. 2021, 12, 14–20. [Google Scholar] [CrossRef]
- Liu, J.; Weng, F.; Li, Z. Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm. Atmos. Environ. 2019, 208, 113–122. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, Q.; Yang, Q.; Zhu, L.; Li, T.; Zhang, L. Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network. Environ. Pollut. 2021, 271, 116327. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Song, Z.; Huang, J.; Zhang, P.; Hu, X.; Zhang, X.; Guan, X.; Ge, J.; Zhou, X. Estimation of Atmospheric PM10 Concentration in China Using an Interpretable Deep Learning Model and Top-of-the-Atmosphere Reflectance Data From China’s New Generation Geostationary Meteorological Satellite, FY-4A. J. Geophys. Res. Atmos. 2022, 127, e2021JD036393. [Google Scholar] [CrossRef]
- Song, Z.; Chen, B.; Zhang, P.; Guan, X.; Wang, X.; Ge, J.; Hu, X.; Zhang, X.; Wang, Y. High temporal and spatial resolution PM2.5 dataset acquisition and pollution assessment based on FY-4A TOAR data and deep forest model in China. Atmos. Res. 2022, 274, 106199. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, C.; Li, T.; Shen, H. Performance comparison of Fengyun-4A and Himawari-8 in PM2.5 estimation in China. Atmos. Environ. 2022, 271, 118898. [Google Scholar] [CrossRef]
- Wang, S.; Lu, F.; Feng, Y. An Investigation of the Fengyun-4A/B GIIRS Performance on Temperature and Humidity Retrievals. Atmosphere 2022, 13, 1830. [Google Scholar] [CrossRef]
- Handschuh, J.; Erbertseder, T.; Baier, F. On the added value of satellite AOD for the investigation of ground-level PM2.5 variability. Atmos. Environ. 2024, 331, 120601. [Google Scholar] [CrossRef]
- Bagheri, H. A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Adv. Space Res. 2022, 69, 3333–3349. [Google Scholar] [CrossRef]
- Pu, Q.; Yoo, E.-H. A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data. Environ. Pollut. 2022, 315, 120419. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Li, J. A Preliminary Layer Perceptible Water Vapor Retrieval Algorithm for Fengyun-4 Advanced Geosynchronous Radiation Imager. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7564–7566. [Google Scholar]
- Cheng, Y.; Dai, T.; Goto, D.; Chen, L.; Si, Y.; Murakami, H.; Yoshida, M.; Zhang, P.; Cao, J.; Nakajima, T.; et al. Improved hourly estimate of aerosol optical thickness over Asian land by fusing geostationary satellites Fengyun-4B and Himawari-9. Sci. Total Environ. 2024, 923, 171541. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Mao, D. Performance of FY-4B GIIRS temperature products under cloudy skies and their enhancement of surface precipitation type forecasting. Atmos. Res. 2024, 302, 107305. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between summertime concurring PM2.5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef]
- Tsao, T.-M.; Hwang, J.-S.; Chen, C.-Y.; Lin, S.-T.; Tsai, M.-J.; Su, T.-C. Urban climate and cardiovascular health: Focused on seasonal variation of urban temperature, relative humidity, and PM2.5 air pollution. Ecotoxicol. Environ. Saf. 2023, 263, 115358. [Google Scholar] [CrossRef]
- Jeong, Y.-C.; Yeh, S.-W.; Jeong, J.I.; Park, R.J.; Wang, Y. Existence of typical winter atmospheric circulation patterns leading to high PM2.5 concentration days in East Asia. Environ. Pollut. 2024, 348, 123829. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, R.; Singh, V.P.; Xu, C.-Y.; Yu, H.; Fan, K.; Wu, Z. Droughts across China: Drought factors, prediction and impacts. Sci. Total Environ. 2022, 803, 150018. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. Clean. Prod. 2018, 203, 810–821. [Google Scholar] [CrossRef]
- Chen, B.; Chen, R.; Zhao, L.; Ren, Y.; Zhang, L.; Zhao, Y.; Lian, X.; Yan, W.; Gao, S. High-resolution short-term prediction of the COVID-19 epidemic based on spatial-temporal model modified by historical meteorological data. Fundam. Res. 2024, 4, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Gammoudi, N.; Kovács, J.; Gresina, F.; Varga, G. Combined use of HYSPLIT model and MODIS aerosols optical depth to study the spatiotemporal circulation patterns of Saharan dust events over Central Europe. Aeolian Res. 2024, 67–69, 100899. [Google Scholar] [CrossRef]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Iraji, F.; Memarian, M.H.; Joghataei, M.; Ghafarian Malamiri, H.R. Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dyn. Atmos. Ocean. 2021, 93, 101197. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.; Cheng, K.; Cole, M.A.; Dai, Q.; Elliott, R.J.R.; Shi, Z. Attribution of Air Quality Benefits to Clean Winter Heating Policies in China: Combining Machine Learning with Causal Inference. Environ. Sci. Technol. 2023, 57, 17707–17717. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C. Using meteorological normalisation to detect interventions in air quality time series. Sci. Total Environ. 2019, 653, 578–588. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Yang, C.; Guan, X.; Xu, Q.; Xing, W.; Chen, X.; Chen, J.; Jia, P. How can SHAP (SHapley Additive exPlanations) interpretations improve deep learning based urban cellular automata model? Comput. Environ. Urban Syst. 2024, 111, 102133. [Google Scholar] [CrossRef]
- Antonini, A.S.; Tanzola, J.; Asiain, L.; Ferracutti, G.R.; Castro, S.M.; Bjerg, E.A.; Ganuza, M.L. Machine Learning model interpretability using SHAP values: Application to Igneous Rock Classification task. Appl. Comput. Geosci. 2024, 23, 100178. [Google Scholar] [CrossRef]
- Aldrees, A.; Khan, M.; Taha, A.T.B.; Ali, M. Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches. J. Water Process Eng. 2024, 58, 104789. [Google Scholar] [CrossRef]
- Tao, C.; Zhu, T.; Fu, D.; Yan, B.; Li, H. Toward better atmospheric polycyclic aromatic hydrocarbons pollution control in the Northern Hemisphere: Process analysis based on interpretable deep learning models. J. Clean. Prod. 2024, 457, 142442. [Google Scholar] [CrossRef]
- Chen, W.; Xu, X.; Liu, W. Combined PMF modelling and machine learning to identify sources and meteorological influencers of volatile organic compound pollution in an industrial city in eastern China. Atmos. Environ. 2024, 334, 120714. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y.; You, Y.; Notholt, J.; Palm, M.; Wang, W.; Shan, C.; Liu, C. Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde. Sci. Total Environ. 2022, 851, 158271. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhang, B.; Wang, D.; Niu, X.; Sun, J.; Xu, H.; Cao, J.; Shen, Z. Application of machine learning in atmospheric pollution research: A state-of-art review. Sci. Total Environ. 2024, 910, 168588. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Huang, J.; Wang, Y.; Li, C.; Ding, L.; Lian, X.; Shi, J. Revealing the Covariation of Atmospheric O2 and Pollutants in an Industrial Metropolis by Explainable Machine Learning. Environ. Sci. Technol. Lett. 2023, 10, 851–858. [Google Scholar] [CrossRef]
- Yang, P.; Meyer, K. Satellites and Satellite Remote Sensing|Remote Sensing: Cloud Properties. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Chi, Y.; Zhao, C.; Yang, Y.; Zhao, X.; Yang, J. Global characteristics of cloud macro-physical properties from active satellite remote sensing. Atmos. Res. 2024, 302, 107316. [Google Scholar] [CrossRef]
- Wang, J.; Gui, H.; An, L.; Hua, C.; Zhang, T.; Zhang, B. Modeling for the source apportionments of PM10 during sand and dust storms over East Asia in 2020. Atmos. Environ. 2021, 267, 118768. [Google Scholar] [CrossRef]
- Guan, Q.; Luo, H.; Pan, N.; Zhao, R.; Yang, L.; Yang, Y.; Tian, J. Contribution of dust in northern China to PM10 concentrations over the Hexi corridor. Sci. Total Environ. 2019, 660, 947–958. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Tan, S.; Zhang, L. Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Sci. Total Environ. 2021, 793, 148535. [Google Scholar] [CrossRef]
- Zhu, Y.-d.; Fan, L.; Wang, J.; Yang, W.-j.; Li, L.; Zhang, Y.-j.; Yang, Y.-y.; Li, X.; Yan, X.; Yao, X.-y.; et al. Spatiotemporal variation in residential PM2.5 and PM10 concentrations in China: National on-site survey. Environ. Res. 2021, 202, 111731. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, S.; Xing, J.; Li, X.; Ma, X.; Song, G.; Teng, M.; Yang, J.; Dong, J.; Meng, S. Retrieving hourly seamless PM2.5 concentration across China with physically informed spatiotemporal connection. Remote Sens. Environ. 2024, 301, 113901. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, L.; Guo, Z.; Xie, X.; Li, L.; Gong, K.; Hu, J. Influence of meteorological reanalysis field on air quality modeling in the Yangtze River Delta, China. Atmos. Environ. 2024, 318, 120231. [Google Scholar] [CrossRef]
- Ge, W.; Li, J.; Liu, J.; Xu, C.; Wu, H.; Zhou, Y.; Ren, Y.; Wang, X.; Zheng, L.; Zhou, J.; et al. Impacts of coal use phase-out in China on the atmospheric environment: Emissions, surface concentrations and exceedance of air quality standards. Atmos. Environ. 2023, 315, 120163. [Google Scholar] [CrossRef]
- Ali, M.A.; Bilal, M.; Wang, Y.; Nichol, J.E.; Mhawish, A.; Qiu, Z.; de Leeuw, G.; Zhang, Y.; Zhan, Y.; Liao, K.; et al. Accuracy assessment of CAMS and MERRA-2 reanalysis PM2.5 and PM10 concentrations over China. Atmos. Environ. 2022, 288, 119297. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Yan, H. An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability. Geosci. Front. 2024, 15, 101762. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W. Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023. Remote Sens. 2024, 16, 1883. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Che, H.; Wang, D.; Gui, K.; Liu, B.; Ma, K.; Zhang, X. Climate factors influencing springtime dust activities over Northern East Asia in 2021 and 2023. Atmos. Res. 2024, 303, 107342. [Google Scholar] [CrossRef]
- Barnaba, F.; Alvan Romero, N.; Bolignano, A.; Basart, S.; Renzi, M.; Stafoggia, M. Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. Environ. Int. 2022, 163, 107204. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, J.; Yin, Y.; Liu, R.; Tian, Y.; Lin, Z.; Zhou, X.; Ren, Y.; Zhang, X.; Ma, Y.; et al. Study of boundary layer parameterization simulation uncertainties of sand-dust storm windfield using high-resolution three-dimensional Doppler wind lidar data. Atmos. Res. 2024, 306, 107456. [Google Scholar] [CrossRef]
- Chen, Y.; An, J.; Qu, Y.; Xie, F.; Ma, S. Dust radiation effect on the weather and dust transport over the Taklimakan Desert, China. Atmos. Res. 2023, 284, 106600. [Google Scholar] [CrossRef]
FY-4A | FY-4B | |||
---|---|---|---|---|
Channel | Wavelength (μm) | Wavelength (μm) | Spatial Resolution (Km) | Main Scientific Objectives |
Visible bands | 0.45~0.49 | 0.45~0.49 | 1 | Small particle aerosol, true color |
0.55~0.75 | 0.55~0.75 | 0.5~1 | Vegetation | |
0.75~0.90 | 0.75~0.90 | 1 | Vegetation, aerosols | |
Short-wave infrared channels | 1.36~1.39 | 1.37~1.39 | 2 | Cirrus clouds |
1.58~1.64 | 1.58~1.64 | 2 | Low cloud/snow, water cloud/ice clouds | |
2.1~2.35 | 2.1~2.35 | 2~4 | Cirrus clouds, aerosol, particle size | |
Mid-wave infrared channels | 3.5~4.0 (High) | 3.5~4.0 (High) | 2 | Clouds, fire points |
3.5~4.0 (Low) | 3.5~4.0 (Low) | 4 | Low-albedo targets, surfaces | |
Water vapor channels | 5.8~6.7 | 5.8~6.7 | 4 | Upper-layer water vapor |
6.9~7.3 | 6.75~7.15 | 4 | Middle-layer water vapor | |
7.24~7.60 | 4 | Lower-layer water vapor | ||
Thermal infrared channels | 8.0~9.0 | 8.3~8.88 | 4 | Total water vapor, clouds |
10.3~11.3 | 10.3~11.3 | 4 | Clouds, surface temperature | |
11.5~12.5 | 11.5~12.5 | 4 | Clouds, total water vapor, surface temperature | |
13.2~13.8 | 13~13.6 | 4 | Clouds, water vapor |
PM10 | PM2.5 | |
---|---|---|
lat | 0.23 | 0.21 |
lon | 0.08 | 0.14 |
height | 0.04 | 0.05 |
pressure | 0.06 | 0.07 |
TM | 0.04 | 0.06 |
SP | 0.11 | 0.09 |
RH | 0.07 | 0.06 |
WS | 0.12 | 0.08 |
BLH | 0.07 | 0.07 |
SOR | 0.04 | 0.06 |
LUCC | 0.02 | 0.01 |
HEIGHT | 0.06 | 0.07 |
RK | 0.05 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhao, L.; Ye, Q.; Ren, Y.; Chen, R.; Chen, B. The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events. Remote Sens. 2024, 16, 3363. https://doi.org/10.3390/rs16183363
Song Z, Zhao L, Ye Q, Ren Y, Chen R, Chen B. The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events. Remote Sensing. 2024; 16(18):3363. https://doi.org/10.3390/rs16183363
Chicago/Turabian StyleSong, Zhihao, Lin Zhao, Qia Ye, Yuxiang Ren, Ruming Chen, and Bin Chen. 2024. "The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events" Remote Sensing 16, no. 18: 3363. https://doi.org/10.3390/rs16183363
APA StyleSong, Z., Zhao, L., Ye, Q., Ren, Y., Chen, R., & Chen, B. (2024). The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events. Remote Sensing, 16(18), 3363. https://doi.org/10.3390/rs16183363