Assessing Future Ecological Sustainability Shaped by Shared Socioeconomic Pathways: Insights from an Arid Farming–Pastoral Zone of China
<p>Study framework.</p> "> Figure 2
<p>Geolocation of the study area.</p> "> Figure 3
<p>Remote sensing data of NDVI (<b>a</b>), PM2.5 concentration (<b>b</b>), and TWS anomaly (<b>c</b>) in 2022.</p> "> Figure 4
<p>Ecological sustainability assessment of the NFYM. (<b>a</b>) The spatial distribution of ecological sustainability at the grid scale for the years 2003, 2007, 2011, 2015, 2019, and 2022; (<b>b</b>) changes in the average values of ecological sustainability for each county from 2003 to 2022. The definitions corresponding to the abbreviations of the county names can be found in <a href="#remotesensing-16-02894-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Comparison of the simulation performance for temperature (<b>a</b>–<b>c</b>) and precipitation (<b>d</b>–<b>f</b>) of different CMIP6 modes based on the MAE, RMSE, and R<sup>2</sup>.</p> "> Figure 6
<p>Changes in temperature (<b>a</b>), precipitation (<b>b</b>), cropland area (<b>c</b>), livestock number (<b>d</b>), and population (<b>e</b>) during 2003–2099 under different scenarios.</p> "> Figure 7
<p>Effectiveness of simulation of ecological sustainability by six machine learning models. (<b>a</b>) Simulation effect of the training set; (<b>b</b>) simulation effect of the validation set.</p> "> Figure 8
<p>Comparison of projection performance of different machine learning models for training (<b>a</b>–<b>c</b>) and validation (<b>d</b>–<b>f</b>) sets based on MAE, RMSE, and R<sup>2</sup>.</p> "> Figure 9
<p>Changes in future ecological sustainability of the NFYM under the three SSPs. (<b>a</b>) Changes in the average ecological sustainability values of the NFYM in the historical period (2003–2022) and future (2023–2099); (<b>b</b>) spatial distribution of ecological sustainability at the county scale for each typical year (i.e., 2022, 2030, 2050, 2070, 2099).</p> "> Figure 10
<p>Changes in ecological sustainability across different counties between 2023 and 2099.</p> "> Figure A1
<p>CMIP6 mode data processing workflow.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Framework
2.2. Study Area
2.3. Ecological Sustainability Assessment Based on Remote Sensing Data
2.4. Generation of Future Climate Scenarios
2.4.1. Selection of CMIP6 Climate Mode
2.4.2. Accuracy Evaluation Metrics
2.4.3. Climate Scenario Bias Correction
2.5. Machine Learning and Statistical Models
3. Results Analysis and Discussion
3.1. Spatiotemporal Changes in Ecological Sustainability during 2003–2022
3.2. Selection of Optimal Future Climate Mode and Projecting Human Activities
3.3. Selection of the Optimal Machine Learning Model
3.4. Projected Changes in Ecological Sustainability during 2023–2099
4. Conclusions
- Ecological sustainability initially decreased and then increased from 2003 to 2022. By 2022, the proportions of areas with great, good, moderate, low, and poor ecological sustainability were 13.37%, 23.96%, 45.65%, 12.10%, and 4.92%, respectively, returning to levels close to those observed in 2003.
- The GFDL-ESM4 mode and RF model demonstrate the best performance in climate and ecological sustainability projections, respectively. The GFDL-ESM4 mode improved temperature projection metrics (MAE, RMSE, R2) by an average of 15.60%, 13.58%, and 1.47% compared to the other six climate modes. For precipitation projections, the improvements were 10.86%, 8.85%, and 59.55%. Meanwhile, the RF model enhanced ecological sustainability projection metrics (MAE, RMSE, R2) by 13.11%, 13.41%, and 13.81% on average compared to the other five machine learning and statistical models.
- The annual change rates of ecological sustainability from 2023 to 2099 are projected to be +0.45%, −0.05%, and −0.46% per year under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively, suggesting that stringent environmental policies can effectively enhance ecological sustainability. The DL, HD, and WC counties exhibit the highest risks of ecological sustainability decline.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Data Processing for Each Driving Factor
Appendix A.1.1. Historical Data
Category | Data | Source |
---|---|---|
Natural environment | Temperature | China meteorological data network |
Precipitation | ||
Human activities | Population | Inner Mongolia statistical yearbook and the statistical yearbooks of each county |
Livestock numbers | ||
Cropland area | Land cover classification gridded maps (ESA-CCI) from the European Space Agency |
Appendix A.1.2. Future Data
- Obtain multidimensional grid data for temperature and precipitation variables from the CMIP6 modes.
- Perform multidimensional grid data preprocessing, including coordinate system definition, interpolation, and cropping to the NFYM region.
- Convert the units of the precipitation data from its original units to millimeters and the temperature data from its original units to degrees Celsius.
- Calculate the annual average temperature and the total annual precipitation for each county.
References
- Montràs-Janer, T.; Suggitt, A.J.; Fox, R.; Jönsson, M.; Martay, B.; Roy, D.B.; Walker, K.J.; Auffret, A.G.; Sveriges, L. Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa. Nat. Ecol. Evol. 2024, 8, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Portner, H.O.; Scholes, R.J.; Arneth, A.; Barnes, D.; Burrows, M.T.; Diamond, S.E.; Duarte, C.M.; Kiessling, W.; Leadley, P.; Managi, S.; et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023, 380, eabl4881. [Google Scholar] [CrossRef] [PubMed]
- Willcock, S.; Hooftman, D.; Neugarten, R.A.; Chaplin-Kramer, R.; Barredo, J.I.; Hickler, T.; Kindermann, G.; Lewis, A.R.; Lindeskog, M.; Martinez-Lopez, J.; et al. Model ensembles of ecosystem services fill global certainty and capacity gaps. Sci. Adv. 2023, 9, eadf5492. [Google Scholar] [CrossRef] [PubMed]
- Conradi, T.; Eggli, U.; Kreft, H.; Schweiger, A.H.; Weigelt, P.; Higgins, S.I. Reassessment of the risks of climate change for terrestrial ecosystems. Nat. Ecol. Evol. 2024, 8, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Michalek, A.T.; Villarini, G.; Husic, A. Climate change projected to impact structural hillslope connectivity at the global scale. Nat. Commun. 2023, 14, 6788. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Luan, W.; Zhang, X. Projecting spatial interactions between global population and land use changes in the 21st century. NPJ Urban Sustain. 2023, 3, 53. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Güneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.; van Puijenbroek, P.J.; van Beek, L.R.P.; Wanders, N.; Sutanudjaja, E.H.; van Vliet, M.T. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution. Nat. Water 2023, 1, 602–613. [Google Scholar] [CrossRef]
- Doughty, C.E.; Keany, J.M.; Wiebe, B.C.; Rey-Sanchez, C.; Carter, K.R.; Middleby, K.B.; Cheesman, A.W.; Goulden, M.L.; Da Rocha, H.R.; Miller, S.D.; et al. Tropical forests are approaching critical temperature thresholds. Nature 2023, 621, 105–111. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef]
- Wei, S.; Chu, X.; Sun, B.; Yuan, W.; Song, W.; Zhao, M.; Wang, X.; Li, P.; Han, G. Climate warming negatively affects plant water-use efficiency in a seasonal hydroperiod wetland. Water Res. 2023, 242, 120246. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ma, Z.; Liu, J. Climate change reshapes bioclimatic environments in China’s dry–wet transition zones. J. Hydrol. 2024, 634, 131122. [Google Scholar] [CrossRef]
- Li, Z.; Ma, T.; Cai, Y.; Fei, T.; Zhai, C.; Qi, W.; Dong, S.; Gao, J.; Wang, X.; Wang, S. Stable or unstable? Landscape diversity and ecosystem stability across scales in the forest–grassland ecotone in northern China. Landsc. Ecol. 2023, 38, 3889–3902. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Zhou, W.; Ren, Z.; Hu, M.; Zhang, Y.; Rodriguez-Caballero, E.; Weber, B.; et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain. 2023, 6, 1363–1372. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Chen, Y.; Liu, Y.; Hu, Y.; Sun, F.; Kayumba, P. Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios. Remote Sens. 2021, 13, 4409. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Chang. 2024, 14, 629–635. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, W.; Chen, S.; Xie, S.; Piao, J.; Ma, T.; Lan, X. Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nat. Geosci. 2024, 17, 181–188. [Google Scholar] [CrossRef]
- Wen, Z.; Ma, X.; Xu, W.; Si, R.; Liu, L.; Ma, M.; Zhao, Y.; Tang, A.; Zhang, Y.; Wang, K.; et al. Combined short-term and long-term emission controls improve air quality sustainably in China. Nat. Commun. 2024, 15, 5169. [Google Scholar] [CrossRef] [PubMed]
- Pascual, U.; Balvanera, P.; Anderson, C.B.; Chaplin-Kramer, R.; Christie, M.; Gonzalez-Jimenez, D.; Martin, A.; Raymond, C.M.; Termansen, M.; Vatn, A.; et al. Diverse values of nature for sustainability. Nature 2023, 620, 813–823. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Chen, L.; Li, D.; Jiang, Y. The Disparity in Normalized Difference Vegetarian Index Response to Climate Warming and Humidification in the Tibetan Plateau before and after 1998. Remote Sens. 2024, 16, 2121. [Google Scholar] [CrossRef]
- Zhang, X.; Evans, J.P.; Burrell, A.L. Less than 4% of dryland areas are projected to desertify despite increased aridity under climate change. Commun. Earth Environ. 2024, 5, 300–309. [Google Scholar] [CrossRef]
- Li, Z.; Sun, F.; Wang, H.; Wang, T.; Feng, Y. Detecting the interactions between vegetation greenness and drought globally. Atmos. Res. 2024, 304, 107409. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Zhou, C.; Sun, C.; Leng, X.; Fu, B. Aridity threshold of ecological restoration mitigated atmospheric drought via land-atmosphere coupling in drylands. Commun. Earth Environ. 2024, 5, 381. [Google Scholar] [CrossRef]
- Song, Y.; Penuelas, J.; Ciais, P.; Wang, S.; Zhang, Y.; Gentine, P.; McCabe, M.F.; Wang, L.; Li, X.; Li, F.; et al. Recent Water Constraints Mediate the Dominance of Climate and Atmospheric CO2 on Vegetation Growth Across China. Earth’s Future 2024, 12, e2023EF004395. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Guan, K.; Peng, B.; Xu, S.; Tang, J.; Zhu, Q.; Till, J.; Jia, X.; Jiang, C.; et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Commun. 2024, 15, 357. [Google Scholar] [CrossRef]
- Yu, Q.; Jiang, L.; Wang, Y.; Liu, J. Enhancing streamflow simulation using hybridized machine learning models in a semi-arid basin of the Chinese loess Plateau. J. Hydrol. 2023, 617, 129115. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Xu, C.Y.; Wang, Z.; Zhang, Z.; Wu, X.; Lai, C.; Zeng, Z.; Tong, H.; Jiang, S. Viewing Soil Moisture Flash Drought Onset Mechanism and Their Changes Through XAI Lens: A Case Study in Eastern China. Water Resour. Res. 2024, 60, e2023WR036297. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, C.; Gou, J.; Zheng, H. Spatiotemporal characteristics and forecasting of short-term meteorological drought in China. J. Hydrol. 2023, 624, 129924. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Crusiol, L.G.T.; Liu, G.; Wuyun, D.; Han, G. Comparing Machine Learning Algorithms for Pixel/Object-Based Classifications of Semi-Arid Grassland in Northern China Using Multisource Medium Resolution Imageries. Remote Sens. 2023, 15, 750. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Chang. Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, X.; Zhou, Y.; Zhao, H.; Jin, Y.; Luo, Y.; Chen, S.; Wu, X.; Pan, Z.; An, P. Land use/cover changes and subsequent water budget imbalance exacerbate soil aridification in the farming-pastoral ecotone of northern China. J. Hydrol. 2023, 624, 129939. [Google Scholar] [CrossRef]
- Pei, H.; Liu, M.; Shen, Y.; Xu, K.; Zhang, H.; Li, Y.; Luo, J. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Sci. Total Environ. 2022, 809, 151153. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Chen, W.; Xiong, Y.; Zhong, M.; Yang, Z.; Shum, C.K.; Li, W.; Liang, L.; Li, Q. Twenty-Year Spatiotemporal Variations of TWS over Mainland China Observed by GRACE and GRACE Follow-On Satellites. Atmosphere 2023, 14, 1717. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, H.; Yang, K.; Jiang, R.; Yang, Y.; Wang, W.; Zhang, X. Projection of China’s future runoff based on the CMIP6 mid-high warming scenarios. Sci. China Earth Sci. 2023, 66, 528–546. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Ding, J.; Xie, X. Analysis of spatial–temporal evolution trends and influential factors of desert-oasis thermal environment in typical arid zone: The case of Turpan–Hami region. Ecol. Indic. 2023, 154, 110747. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Fan, X.; Gou, J.; Zhang, Q.; Zheng, H. Quantifying the Uncertainty Sources of Future Climate Projections and Narrowing Uncertainties with Bias Correction Techniques. Earth’s Future 2022, 10, e2022EF002963. [Google Scholar] [CrossRef]
- Ishida, K.; Ercan, A.; Nagasato, T.; Kiyama, M.; Amagasaki, M. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. J. Environ. Manag. 2024, 359, 120931. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, L.; Lu, H.; Fan, Y.; Zhang, Y.; Wu, Y. An assessment model for urban resilience based on the pressure-state-response framework and BP-GA neural network. Urban Clim. 2023, 49, 101543. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, H.; Huang, T.; Wu, Y.; Guo, B.; Liu, Z.; Luo, H.; Tang, J.; Zhou, H.; Wang, L.; et al. Improved random forest algorithms for increasing the accuracy of forest aboveground biomass estimation using Sentinel-2 imagery. Ecol. Indic. 2024, 159, 111752. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Ehsan, M.; Sharma, G.; Yu, J.; Khadke, L.; Gautam, V.K.; Awad, A.; Jinsong, D. Advanced stacked integration method for forecasting long-term drought severity: CNN with machine learning models. J. Hydrol. Reg. Stud. 2024, 53, 101759. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Neuroforecasting of daily streamflows in the UK for short- and medium-term horizons: A novel insight. J. Hydrol. 2023, 624, 129888. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Fernandes, A.C.P.; Ferreira, A.R.L.; Cortes, R.M.V.; Pacheco, F.A.L. A partial least squares–Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total Environ. 2018, 626, 1069–1085. [Google Scholar] [CrossRef]
- Kotz, M.; Levermann, A.; Wenz, L. The effect of rainfall changes on economic production. Nature 2022, 601, 223–227. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.A.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, U.; Spearing, L.; Derrible, S. Depopulation and associated challenges for US cities by 2100. Nat. Cities 2024, 1, 51–61. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Qian, Y. Urbanization exacerbates continental- to regional-scale warming. One Earth 2024, 7, 1–15. [Google Scholar] [CrossRef]
- Huang, J.; Qin, D.; Jiang, T.; Wang, Y.; Feng, Z.; Zhai, J.; Cao, L.; Chao, Q.; Xu, X.; Wang, G.; et al. Effect of Fertility Policy Changes on the Population Structure and Economy of China: From the Perspective of the Shared Socioeconomic Pathways. Earth’s Future 2019, 7, 250–265. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, C.; Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 2023, 10, 748. [Google Scholar] [CrossRef] [PubMed]
County Name | Abbreviation |
---|---|
Duolun County | DL |
Wuchuan County | WC |
Qahar Middle Banner | QM |
Zhenglan County | ZL |
Huade County | HD |
Qahar Back Banner | QB |
Shangdu County | SD |
Guyang County | GY |
Zhengxiangbai County | ZX |
Abag Banner | AB |
Xianghuang County | XH |
Darhan Mumingan Joint Banner | DMJ |
Siziwang Banner | SZW |
Sonit Left Banner | SL |
Sonit Right Banner | SR |
Urat Middle Banner | UM |
Erenhot | ER |
Urat Back Banner | UB |
Data | Observation Sensor | Data Sources |
---|---|---|
NDVI | Satellite-based Moderate Resolution Imaging Spectroradiometer | NASA MOD13A3 |
PM2.5 concentration | Satellite-based Moderate Resolution Imaging Spectroradiometer | China High Air Pollutants Dataset [35] |
Terrestrial water storage | K-band Ranging System and Accelerometers | China Terrestrial Water Storage Dataset [36] |
Scenario | Scenario Description |
---|---|
SSP1-2.6 | It is an upgrade of the RCP2.6 scenario (relatively low greenhouse gas emissions) based on the SSP1 (sustainable development) pathway. The radiative forcing in this scenario reaches 2.6 W/m2 by 2099 [37]. |
SSP2-4.5 | It is an upgrade of the RCP4.5 scenario (medium greenhouse gas emissions) based on the SSP2 (middle-of-the-road) pathway. The radiative forcing in this scenario reaches 4.5 W/m2 by 2099 [37]. |
SSP5-8.5 | It is an upgrade of the RCP8.5 scenario (high greenhouse gas emissions) based on the SSP5 (conventional development) pathway. The radiative forcing in this scenario reaches 8.5 W/m2 by 2099 [37]. |
Mode Name Abbreviation | Mode Name | Institution | Institution Abbreviation | Country |
---|---|---|---|---|
BCC-CSM2-MR | Beijing Climate Center Climate System Mode version 2 Medium Resolution | National Climate Center | BCC | China |
CAMS-CSM1-0 | Chinese Academy of Meteorological Sciences Climate System Mode version 1.0 | Chinese Academy of Meteorological Sciences | CAMS | China |
CAS-ESM2-0 | Chinese Academy of Sciences Earth System Mode version 2.0 | Institute of Atmospheric Physics, Chinese Academy of Sciences | CAS | China |
CIESM | Community Integrated Earth System Mode | Tsinghua University | THU | China |
NorESM2-MM | Norwegian Earth System Mode version 2 Medium-Resolution | Norwegian Climate Center | NCC | Norway |
CESM2-WACCM | Community Earth System Mode Version 2 with the Whole Atmosphere Community Climate Mode | National Center for Atmospheric Research | NCAR | United States |
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory Earth System Mode version 4 | National Oceanic and Atmospheric Administration | NOAA | United States |
Model Name | Description | Reference |
---|---|---|
Long Short-Term Memory (LSTM) | The fundamental architecture of an LSTM network comprises an input gate, a forget gate, an output gate, and a cell state. These gates regulate the flow of information at each time step, updating the cell state and generating the output. | [40] |
Backpropagation Neural Network (BPNN) | The basic structure of a BPNN includes an input layer, one or more hidden layers, and an output layer. Each layer consists of several neurons, and the layers are connected by weights. The training process mainly includes two phases: forward propagation and backpropagation. Through continuous adjustment of weights and biases, the network minimizes the output error. | [41] |
Random Forests (RF) | RF consists of multiple decision trees, each generated by randomly sampling the training data and selecting random features during training, resulting in relatively independent models. The final projection is based on the aggregated results of all trees. | [42] |
Convolutional Neural Networks (CNN) | The fundamental architecture of a CNN includes convolutional layers, pooling layers, and fully connected layers. Each layer performs distinct operations on the input data, progressively extracting higher-level features. The convolutional layer is the core component of a CNN, responsible for extracting local features from the data through convolution operations. | [43] |
Radial Basis Function (RBF) | The fundamental architecture of an RBF network includes an input layer, a hidden layer, and an output layer. The hidden layer performs nonlinear transformations, while the output layer executes linear combinations of the transformed data. | [44] |
Ecological Sustainability Scale | Range of Values |
---|---|
Great sustainability | 0.5–1 |
Good sustainability | 0.43–0.5 |
Moderate sustainability | 0.37–0.43 |
Low sustainability | 0.3–0.37 |
Poor sustainability | 0–0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Zhang, S.; Zhou, T.; Zhang, F.; Zhao, T.; Wu, X.; Zhuo, Y.; Zhang, Y.; Lu, N. Assessing Future Ecological Sustainability Shaped by Shared Socioeconomic Pathways: Insights from an Arid Farming–Pastoral Zone of China. Remote Sens. 2024, 16, 2894. https://doi.org/10.3390/rs16162894
Ji J, Zhang S, Zhou T, Zhang F, Zhao T, Wu X, Zhuo Y, Zhang Y, Lu N. Assessing Future Ecological Sustainability Shaped by Shared Socioeconomic Pathways: Insights from an Arid Farming–Pastoral Zone of China. Remote Sensing. 2024; 16(16):2894. https://doi.org/10.3390/rs16162894
Chicago/Turabian StyleJi, Jiachen, Sunxun Zhang, Tingting Zhou, Fan Zhang, Tianqi Zhao, Xinying Wu, Yanan Zhuo, Yue Zhang, and Naijing Lu. 2024. "Assessing Future Ecological Sustainability Shaped by Shared Socioeconomic Pathways: Insights from an Arid Farming–Pastoral Zone of China" Remote Sensing 16, no. 16: 2894. https://doi.org/10.3390/rs16162894
APA StyleJi, J., Zhang, S., Zhou, T., Zhang, F., Zhao, T., Wu, X., Zhuo, Y., Zhang, Y., & Lu, N. (2024). Assessing Future Ecological Sustainability Shaped by Shared Socioeconomic Pathways: Insights from an Arid Farming–Pastoral Zone of China. Remote Sensing, 16(16), 2894. https://doi.org/10.3390/rs16162894